scispace - formally typeset
Search or ask a question
Author

D. Schardt

Bio: D. Schardt is an academic researcher. The author has contributed to research in topics: Laser beam quality & Raster scan. The author has an hindex of 1, co-authored 1 publications receiving 691 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The design and technical realization of the magnetic scanning system at GSI combines features of both scan techniques and it was found that both methods lead to nearly identical results.
Abstract: Beams of heavy ions have favourable physical and biological properties for the use in radiotherapy. These advantages are most pronoucced if the beam is delivered in a tumor-conform way by active beam scanning. A magnetic scanning technique is used to spread the beam laterally. The range of the particles in tissue is controlled by the variation of the beam energy in the accelerator. Computer simulations were used to compare a discrete scan mode (pixel scan) with a continous scan mode (raster scan). It was found that both methods lead to nearly identical results. The design and technical realization of the magnetic scanning system at GSI combines features of both scan techniques. First results using the lateral beam scanning method as well as the combination of the active energy variation with the magnetic beam scanning are presented.

728 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities, and the progress in heavy-ion therapy is reviewed, including physical and technical developments, radiobiological studiesmore and models, as well as radiooncological studies.
Abstract: High-energy beams of charged nuclear particles (protons and heavier ions) offer significant advantages for the treatment of deep-seated local tumors in comparison to conventional megavolt photon therapy. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak) near the end of range with a sharp fall-off at the distal edge. Taking full advantage of the well-defined range and the small lateral beam spread, modern scanning beam systems allow delivery of the dose with millimeter precision. In addition, projectiles heavier than protons such as carbon ions exhibit an enhanced biological effectiveness in the Bragg peak region caused by the dense ionization of individual particle tracks resulting in reduced cellular repair. This makes them particularly attractive for the treatment of radio-resistant tumors localized near organs at risk. While tumor therapy with protons is a well-established treatment modality with more than 60 000 patients treated worldwide, the application of heavy ions is so far restricted to a few facilities only. Nevertheless, results of clinical phase I-II trials provide evidence that carbon-ion radiotherapy might be beneficial in several tumor entities. This article reviews the progress in heavy-ion therapy, including physical and technical developments, radiobiological studiesmore » and models, as well as radiooncological studies. As a result of the promising clinical results obtained with carbon-ion beams in the past ten years at the Heavy Ion Medical Accelerator facility (Japan) and in a pilot project at GSI Darmstadt (Germany), the plans for new clinical centers for heavy-ion or combined proton and heavy-ion therapy have recently received a substantial boost.« less

619 citations

Journal ArticleDOI
TL;DR: This review describes the physical, biologic, and technologic aspects of particle beam therapy and clinical trials investigating proton and carbon ion RT will be discussed in the context of their relevance to recent concepts of treatment with RT.
Abstract: Particle beams like protons and heavier ions offer improved dose distributions compared with photon (also called x-ray) beams and thus enable dose escalation within the tumor while sparing normal tissues. Although protons have a biologic effectiveness comparable to photons, ions, because they are heavier than protons, provide a higher biologic effectiveness. Recent technologic developments in the fields of accelerator engineering, treatment planning, beam delivery, and tumor visualization have stimulated the process of transferring particle radiation therapy (RT) from physics laboratories to the clinic. This review describes the physical, biologic, and technologic aspects of particle beam therapy. Clinical trials investigating proton and carbon ion RT will be summarized and discussed in the context of their relevance to recent concepts of treatment with RT.

578 citations

Journal ArticleDOI
TL;DR: A novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12C, designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system is described.
Abstract: We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows us to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40 000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code has been in clinical use since the start of the GSI pilot project in December 1997. Forty-eight patients have been successfully planned and treated.

525 citations

Journal ArticleDOI
TL;DR: The LET-RBE spectra for cell killing for cultured mammalian cells exposed to accelerated heavy ions were investigated to design a spread-out Bragg peak beam for cancer therapy at HIMAC, National Institute of Radiological Sciences, Chiba, prior to clinical trials.
Abstract: Furusawa, Y., Fukutsu, K., Aoki, M., Itsukaichi, H., Eguchi-Kasai, K., Ohara, H., Yatagai, F., Kanai, T. and Ando, K. Inactivation of Aerobic and Hypoxic Cells from Three Different Cell Lines by Accelerated 3He-, 12C- and 20Ne-Ion Beams. The LET-RBE spectra for cell killing for cultured mammalian cells exposed to accelerated heavy ions were investigated to design a spread-out Bragg peak beam for cancer therapy at HIMAC, National Institute of Radiological Sciences, Chiba, prior to clinical trials. Cells that originated from a human salivary gland tumor (HSG cells) as well as V79 and T1 cells were exposed to 3He-, 12C- and 20Ne-ion beams with an LET ranging from approximately 20–600 keV/μm under both aerobic and hypoxic conditions. Cell survival curves were fitted by equations from the linear-quadratic model and the target model to obtain survival parameters. RBE, OER, α and D0 were analyzed as a function of LET. The RBE increased with LET, reaching a maximum at around 200 keV/μm, then decreased wi...

416 citations

Journal ArticleDOI
TL;DR: In this paper, the physical and biological basis of the action of ion beams in cells and tissues is briefly reviewed and the variation of radiobiological effectiveness as function of the radiation quality is presented.

385 citations