scispace - formally typeset
Search or ask a question
Author

D. Vignaud

Bio: D. Vignaud is an academic researcher from university of lille. The author has contributed to research in topics: Graphene & Graphene nanoribbons. The author has an hindex of 11, co-authored 15 publications receiving 526 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 2015-Carbon
TL;DR: In this paper, Bilayer-free monolayer graphene was obtained by a careful pre-annealing step and by optimizing the H2 flow during growth, and as-grown graphene was transferred using an improved wet chemical graphene transfer process.

199 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of MoS2 nanosheets using a simple two-step additive-free growth technique was reported, and the as-synthesized nanOSheets were characterized to determine their structure and composition, as well as their optical properties.
Abstract: Here, we report on the synthesis of MoS2 nanosheets using a simple two-step additive-free growth technique. The as-synthesized nanosheets were characterized to determine their structure and composition, as well as their optical properties. The MoS2 nanosheets were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), including high-resolution scanning TEM imaging and energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL). The as-produced MoS2 nanosheets are vertically aligned with curved edges and are densely populated. The TEM measurements confirmed that the nanosheets have the 2H-MoS2 crystal structure in agreement with the Raman results. The XPS results revealed the presence of high purity MoS2. Moreover, a prominent PL similar to mechanically exfoliated few and mono-layer MoS2 was observed for the as-grown nanosheets. For the thin (≤50 nm) nanosheets, the PL feature was observed at the same energy as that for a direct band-gap monolayer MoS2 (1.83 eV). Thus, the as-produced high-quality, large-area, MoS2 nanosheets could be potentially useful for various optoelectronic and catalysis applications.

89 citations

Journal ArticleDOI
TL;DR: Graphene layers have been grown by molecular beam epitaxy (MBE) on the C-face of SiC and have been characterized by atomic force microscopy, low energy electron diffraction (LEED), and UV photoelectron spectroscopy as mentioned in this paper.
Abstract: Graphene layers have been grown by molecular beam epitaxy (MBE) on the (0001¯) C-face of SiC and have been characterized by atomic force microscopy, low energy electron diffraction (LEED), and UV photoelectron spectroscopy. Contrary to the graphitization process, the step-terrace structure of SiC is fully preserved during the MBE growth. LEED patterns show multiple orientation domains which are characteristic of graphene on SiC (0001¯), indicating non-Bernal rotated graphene planes. Well-defined Dirac cones, typical of single-layer graphene, have been observed in the valence band for few graphene layers by synchrotron spectroscopy, confirming the electronic decoupling of graphene layers.

85 citations

Journal ArticleDOI
TL;DR: The as-grown MoS2 NSs would be highly useful in the development of catalysis, nano-optoelectronics, gas-sensing and bio-sensor applications, and the high crystallinity and quality of the synthesized NSs are revealed.
Abstract: Vertically aligned MoS2 nanosheets (NSs) with exposed edges were successfully synthesized over a large area (∼2 cm2). The NSs were grown using an ambient pressure chemical vapor deposition technique via rapid sulfurization of sputter deposited thick molybdenum films. Extensive characterization of the grown MoS2 NSs has been carried out using high resolution scanning and transmission electron microscopy (SEM & TEM). A special care was given to the TEM lamella preparation process by means of a focused ion beam to preserve the NS growth direction. The cross-section TEM measurements revealed the growth of densely packed, vertically aligned and straight MoS2 NSs. Additional characterization techniques such as atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL) were used to evaluate the MoS2 NSs. These studies revealed the high crystallinity and quality of the synthesized NSs. The MoS2 NSs show visible light emission similar to mechanically exfoliated monolayer MoS2 NSs. The striking PL signal comes from the exposed edges as shown by experimental and theoretical calculations. The vertical MoS2 NSs also exhibit a hydrophobic character with a contact angle of 114°. The as-grown MoS2 NSs would be highly useful in the development of catalysis, nano-optoelectronics, gas-sensing and bio-sensing device applications.

49 citations

Journal ArticleDOI
TL;DR: Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, the direct observation of massless Dirac particles in monolayer graphene is reported, providing a comprehensive mapping of their low-hole doped Dirac electron bands.
Abstract: The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene “molecules” nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

45 citations


Cited by
More filters
01 Jan 2009
TL;DR: The aim of the research presented in this thesis is to create new methods for design for manufacturing, by using several approaches of KE, and find the beneficial and less beneficial aspects of these methods in comparison to each other and earlier research.
Abstract: As companies strive to develop artefacts intended for services instead of traditional sell-off, new challenges in the product development process arise to promote continuous improvement and increasing market profits. This creates a focus on product life-cycle components as companies then make life-cycle commitments, where they are responsible for the function availability during the extent of the life-cycle, i.e. functional products. One of these life-cycle components is manufacturing; therefore, companies search for new approaches of success during manufacturability evaluation already in engineering design. Efforts have been done to support early engineering design, as this phase sets constraints and opportunities for manufacturing. These efforts have turned into design for manufacturing methods and guidelines. A further step to improve the life-cycle focus during early engineering design is to reuse results and use experience from earlier projects. However, because results and experiences created during project work are often not documented for reuse, only remembered by some people, there is a need for design support. Knowledge engineering (KE) is a methodology for creating knowledge-based systems, e.g. systems that enable reuse of earlier results and make available both explicit and tacit corporate knowledge, enabling the automated generation and evaluation of new engineering design solutions during early product development. There are a variety of KE-approaches, such as knowledge-based engineering, case-based reasoning and programming, which have been used in research to develop design for manufacturing methods and applications. There are, however, opportunities for research where several approaches and their interdependencies, to create a transparent picture of how KE can be used to support engineering design, are investigated. The aim of the research presented in this thesis is to create new methods for design for manufacturing, by using several approaches of KE, and find the beneficial and less beneficial aspects of these methods in comparison to each other and earlier research. This thesis presents methods and applications for design for manufacturing using KE. KE has been employed in several ways, namely rule-based, rule-, programmingand finite element analysis (FEA)-based, and ruleand plan-based, which are tested and compared with each other. Results show that KE can be used to generate information about manufacturing in several ways. The rule-based way is suitable for supporting life-cycle commitments, as engineering design and manufacturing can be integrated with maintenance and performance predictions during early engineering design, though limited to the firing of production rules. The rule-, programmingand FEA-based way can be used to integrate computer-aided design tools and virtual manufacturing for non-linear stress and displacement analysis. This way may also bridge the gap between engineering designers and computational experts, even though this way requires a larger effort to program than the rule-based. The ruleand planbased way can enable design for manufacturing in two fashions – based on earlier manufacturing plans and based on rules. Because earlier manufacturing plans, together with programming algorithms, can handle knowledge that may be more intricate to capture as rules, as opposed to the time demanding routine work that is often automated by means of rules, several opportunities for designing for manufacturing exist.

727 citations

Journal ArticleDOI
TL;DR: The latest advances in the use of MoS2 nanosheets for important water-related environmental applications such as contaminant adsorption, photocatalysis, membrane-based separation, sensing, and disinfection are presented.
Abstract: In an era of graphene-based nanomaterials as the most widely studied two-dimensional (2D) materials for enhanced performance of devices and systems in numerous environmental applications, molybdenum disulfide (MoS2) nanosheets stand out as a promising alternative 2D material with many excellent physicochemical, biological, and mechanical properties that differ significantly from those of graphene-based nanomaterials, potentially leading to new environmental phenomena and novel applications. This Critical Review presents the latest advances in the use of MoS2 nanosheets for important water-related environmental applications such as contaminant adsorption, photocatalysis, membrane-based separation, sensing, and disinfection. Various methods for MoS2 nanosheet synthesis are examined, and their suitability for different environmental applications is discussed. The unique structure and properties of MoS2 nanosheets enabling exceptional environmental capabilities are compared with those of graphene-based nanoma...

570 citations

Journal ArticleDOI
TL;DR: An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorus would play in next-generation PV cells.
Abstract: Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next-generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene-based materials are suitable for various applications, including photovoltaics.

354 citations

24 Feb 2007
TL;DR: In this article, the synthesis and detailed characterization of graphite thin films produced by thermal decomposition of the (0001) face of a 6H-SiC wafer, demonstrating the successful growth of single crystalline films down to approximately one graphene layer.
Abstract: This paper reports the synthesis and detailed characterization of graphite thin films produced by thermal decomposition of the (0001) face of a 6H-SiC wafer, demonstrating the successful growth of single crystalline films down to approximately one graphene layer. The growth and characterization were carried out in ultrahigh vacuum (UHV) conditions. The growth process and sample quality were monitored by low-energy electron diffraction, and the thickness of the sample was determined by core level x-ray photoelectron spectroscopy. High-resolution angle-resolved photoemission spectroscopy shows constant energy map patterns, which are very sharp and fully momentum-resolved, but nonetheless not resolution limited. We discuss the implications of this observation in connection with scanning electron microscopy data, as well as with previous studies.

345 citations

Journal ArticleDOI
TL;DR: The recent progress on host 2D materials, various intercalation species, andintercalation methods, as well as tunable properties and potential applications enabled by intercalated materials are comprehensively reviewed.
Abstract: 2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results in terms of tunable properties and device performance. Among all modification methods, intercalation of 2D materials has emerged as a particularly powerful tool: it provides the highest possible doping level and is capable of (ir)reversibly changing the phase of the material. Intercalated 2D materials exhibit extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. The recent progress on host 2D materials, various intercalation species, and intercalation methods, as well as tunable properties and potential applications enabled by intercalation, are comprehensively reviewed.

327 citations