scispace - formally typeset
Search or ask a question
Author

D. W. Taylor

Other affiliations: United States Geological Survey
Bio: D. W. Taylor is an academic researcher from Oregon State University. The author has contributed to research in topics: Pleistocene & Ecology and Evolutionary Biology. The author has an hindex of 14, co-authored 29 publications receiving 786 citations. Previous affiliations of D. W. Taylor include United States Geological Survey.

Papers
More filters
Journal ArticleDOI
TL;DR: The two established subfamilies of Physinae are divided into seven new tribes including 11 new genera, with diagnoses and lists of species referred to each, and the simplest reproductive system is found in Austrinauta of the Aplexinae.
Abstract: Physidae, a world-wide family of freshwater snails with about 80 species, are reclassified by progressive characters of the penial complex (the terminal male reproductive system): form and composition of penial sheath and preputium, proportions and structure of penis, presence or absence of penial stylet, site of pore of penial canal, and number and insertions of penial retractor muscles. Observation of these characters, many not recognized previously, has been possible only by the technique used in anesthetizing, fixing, and preserving. These progressive characters are the principal basis of 23 genera, four grades and four clades within the family. The two established subfamilies are divided into seven new tribes including 11 new genera, with diagnoses and lists of species referred to each. Proposed as new are: in Aplexinae, Austrinautini, with Austrinauta g.n. and Caribnautu harryi g.n., nom.nov.; Aplexini; Amecanautini with Amecanauta jaliscoensis g.n., sp.n., Mexinauta g.n., and Mayabina g.n., with M. petenensis, polita, sanctijohannis, tempisquensis spp.nn., Tropinauta sinusdulcensis g.n., sp.n.; and Stenophysini, with Stenophysa spathidophallus sp.n.; in Physinae, Haitiini, with Haitia moreleti sp.n.; Physini, with Laurentiphysa chippevarum g.n., sp.n., Physa mirollii nom.nou.; and Physellini, with Chiapaphysa g.n., and C. grijalvae, C. pacifica spp.nn., Utahphysa g.n., Archiphysa g.n., with A. ashmuni, A. sonomae spp.nn., Physella hemphilli sp.n., and Ultraphysella sinaloae g.n., sp.n. The simplest reproductive system is found in Austrinauta of the Aplexinae; its penial complex approaches that in the related family Lymnaeidae. Within Physinae a close approximation is found in Haitia. By these two genera the two subfamilies are drawn close together. Four grades of progressive complexity are recognized: (I) penial sheath entirely muscular; (II) penial sheath with both glandular and muscular tissue; (III) penis with penial stylet or other specialization of the tip of the penis; and (IV) pore of penial canal lateral rather than terminal as in the lower grades. In both subfamilies there are clades with glandular tissue in the penial sheath, a penial sheath subdivided into two parts, and tip of penis specialized in various ways. These clades are formalized as new tribes. Of 23 genera of Physidae, 17 occur in Pacific drainages of North and Central America, eight of these restricted to the region. Concentration of primitive genera along the Pacific coast from Mexico to Costa Rica conforms to previous observations that primitive pulmonate families are concentrated within, or along the continental margins of, the Pacific Ocean. An ancestral origin of Physidae along an ancient eastern Pacific coast is probable. From this region the several lineages have spread north, south and east in the Americas, and through Siberia to Europe. Although Physinae have fewer genera than Aplexinae (11 v. 12), they have more species (47 v. 34). Greater land area in the temperate zone has provided more opportunity for speciation of Physinae, in contrast to the generally tropical and warm-temperate range of Aplexinae. Furthermore, 10 species of Physinae are localized in individual lakes, whereas Aplexinae are not lake-dwellers. Both well-developed egg strings and capsular strings are found in the spawn of Sibirenauta elongatus. These structures have been known in Lymnaeidae, but not hitherto in Physidae; they are a link with some marine groups, such as Siphonariidae. Spiral color bands and white streaks in the shell of Mexinauta recall those in Lancidae (Lymnaeacea), whereas the radula of Physidae is like that of Chilinidae. Physidae thus show affinities to various basal stocks of aquatic pulmonates; no clear-cut sister-group can be recognized. Most species have a restricted range; out of 55 with sufficiently detailed information for analysis, 25 are limited to a single 1 degrees x 1 degrees quadrangle. Only a few species are widespread, on one or even two continents. Accordingly, more species of Physidae are threatened by habitat destruction than in other families of Hygrophila with generally wider distributions. Other features are a key to genera; catalog of more than 430 names applied to living Physidae, with original reference, type locality, and location of type specimens; summary of museums with types; and glossary.

119 citations

Journal Article
01 Jan 1966-Veliger

87 citations

Book ChapterDOI
31 Jan 1965

67 citations

Journal ArticleDOI
TL;DR: In this paper, the distribution of 42 principal families of freshwater and marginally marine molluscs is summarized, including a variety of groups derived independently from marine ancestry, and varying in range of habitat, reproduction, and distribution.

60 citations


Cited by
More filters
Journal ArticleDOI
08 Feb 2013-Science
TL;DR: A phylogenetic tree shows that crown clade Placentalia and placental orders originated after the K-Pg boundary, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats).
Abstract: To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.

1,003 citations

Journal ArticleDOI
TL;DR: Fossil floras and mammalian faunas from the Great Plains indicate that as aridity increased during the Miocene and Pliocene, forests and woodlands were confined gradually to moister valleys as grassland spread on the interfluves which were covered earlier with park-like openings as discussed by the authors.
Abstract: Fossil floras and mammalian faunas from the Great Plains indicate that as aridity increased during the Miocene and Pliocene, forests and woodlands were confined gradually to moister valleys as grassland spread on the interfluves which were covered earlier with park-like openings. The initial rise of extensive grasslands probably commenced in the Miocene-Pliocene transition (7-5 m.y. ago), the driest part of the Tertiary, which restricted forests and woodlands and encouraged the explosive evolution of grasses and forbs. Following the fluctuation of Pleistocene climatevegetation zones, warm, dry Altithermal climate restricted wooded tracts at the expense of spreading grasslands. The rise of the grassland biome was thus due to occasional periods of increased aridity that restricted forests and woodlands and favored grasses and forbs; to increasing drought west of the 100th meridian which created a flammable source (dry grass); to natural and man-made fires on the relatively flat plains over which fire could spread uninterruptedly; to fire that destroyed relict trees and groves on the flat grasslands, restricting them to rocky ridges removed from fire; and probably also to large browsing mammals (many now extinct) that may have destroyed scattered trees and shrubs on the interfluves during the Altithermal. Youthfulness of the grassland biome agrees with a) the occurrence of most of its species in the bordering forests and woodlands, b) the presence of few endemic plants in it, a relation shown also by insects and birds, c) the relict occurrence of diverse trees over the region, and d) the invasion of grassland by woody vegetation.

494 citations

Journal ArticleDOI
TL;DR: The world’s gastropod fauna from continental waters comprises ∼4,000 valid described species and a minimum of 33–38 independent lineages of Recent Neritimorpha, Caenogastropoda and Heterobranchia, but the status of the great majority of taxa is unknown, a situation that is exacerbated by a lack of experts and critical baseline data.
Abstract: The world’s gastropod fauna from continental waters comprises ∼4,000 valid described species and a minimum of 33–38 independent lineages of Recent Neritimorpha, Caenogastropoda and Heterobranchia (including the Pulmonata). The caenogastropod component dominates in terms of species richness and diversity of morphology, physiology, life and reproductive modes and has produced several highly speciose endemic radiations. Ancient oligotrophic lakes (e.g., Baikal, Ohrid, Tanganyika) are key hotspots of gastropod diversity; also noteworthy are a number of lower river basins (e.g., Congo, Mekong, Mobile Bay). But unlike many other invertebrates, small streams, springs and groundwater systems have produced the most speciose associations of freshwater gastropods. Despite their ecological importance in many aquatic ecosystems, understanding of even their systematics is discouragingly incomplete. The world’s freshwater gastropod fauna faces unprecedented threats from habitat loss and degradation and introduced fishes and other pests. Unsustainable use of ground water, landscape modification and stock damage are destroying many streams and springs in rural/pastoral areas, and pose the most significant threats to the large diversity of narrow range endemics in springs and ground water. Despite comprising only ∼5% of the world’s gastropod fauna, freshwater gastropods account for ∼20% of recorded mollusc extinctions. However, the status of the great majority of taxa is unknown, a situation that is exacerbated by a lack of experts and critical baseline data relating to distribution, abundance, basic life history, physiology, morphology and diet. Thus, the already considerable magnitude of extinction and high levels of threat indicated by the IUCN Red List of Threatened Species is certainly a significant underestimate.

440 citations

Journal ArticleDOI
TL;DR: A fully ranked, hierarchical classification summarizes recent advances in the phylogeny of the Gastropoda and Monoplacophora.
Abstract: 2,604 names at the rank of subtribe, tribe, subfamily, family and superfamily have been proposed for Recent and fossil gastropods, and another 35 for monoplacophorans. All names are listed in a nomenclator giving full bibliographical reference, date of publication, typification, and their nomenclatural availability and validity under the International Code of Zoological Nomenclature. Another 790 names, established for categories above the familygroup (infraorder to subclass) are listed separately. A fully ranked, hierarchical classification summarizes recent advances in the phylogeny of the Gastropoda and Monoplacophora. In all, the classification recognizes as valid a total of 721 gastropod families, of which 245 are known exclusively as fossils and 476 occur in the Recent with or without a fossil record; and 20 monoplacophoran families, of which 1 only occurs as Recent.Nomenclatural acts in this work: Amberleya bathonica Cox & Arkell, 1950, fixed as type species of Amberleya J. Morris & Lycett, 1851, under Art. 70.3; Ampezzopleura tenuis Nutzel, 1998, fixed as type species of Ampezzopleura Bandel, 1991, under Art. 70.3; Proserpina nitida G. B. Sowerby II, 1839, designated type species of Despoena Newton, 1891; Buccinum glabratum Linnaeus, 1758, designated type species of Dipsaccus H. Adams & A. Adams, 1853; Murex ficus Linnaeus, 1758, designated type species of Ficula Swainson, 1835; Oncomelania hupensis Gredler, 1881, designated type species of Hemibia Heude, 1890; Murex metaxa Delle Chiaje, 1828, fixed as type species of Metaxia Monterosato, 1884 under Art. 70.3; Neridomus anglicus Cox & Arkell, 1950, fixed as type species of Neridomus J. Morris & Lycett, 1851, under Art. 70.3; Navicella clypeolum Recluz, 1843, designated type species of Orthopoma Gray, 1868; Trochus viadrinus M. Schmidt, 1905, fixed as type species of Parataphrus Chavan, 1954 under Art. 70.3; Helix pomatia Linnaeus, 1758, designated type species of Pentataenia A. Schmidt, 1855; Flammulina ponsonbyi Suter, 1897, fixed as type species of Phenacohelix Suter, 1892, under Art. 70.3; Cyrtolites corniculum Eichwald, 1860, fixed as type species of Pollicina Koken, 1895, under Art. 70.3; Purpurina elegantula d'Orbigny, 1850, designated as type species of Purpurina d'Orbigny, 1850, and lectotype of Turbo bellona d'Orbigny, 1850, designated as neotype of Purpurina elegantula; Pyramidella minuscula Monterosato, 1880, fixed as type species of Tiberia Jeffreys, 1884, under Art. 70.3; Cyclostoma delicatum Philippi, 1844, fixed as type species of Trachysma G. O. Sars, 1878, under Art. 70.3; Helix elegans Gmelin, 1791, fixed as type species of Trochoidea T. Brown, 1827, under Art. 70.3; Turritellopsis stimpsoni Dall, 1919, fixed as type species of Turritellopsis G. O. Sars, 1878, under Art. 70.3; Fusus averillii Gabb, 1864, fixed as type species of Volutoderma Gabb, 1876, under Art. 70.3; Voluta pepo Lightfoot, 1786, fixed as type species of Yetus Bowdich, 1822. Curnonidae d'Udekem d'Acoz, nom. nov., and Curnon d'Udekem d'Acoz, nom. nov., are established for Charcotiidae Odhner, 1926, and Charcotia Vayssiere, 1906, (between 27 March and 1 May), non Charcotia Chevreux, 1906 (January) [Amphipoda]; Yuopisthonematidae Nutzel, nom. nov., and Yuopisthonema Nutzel, nom. nov., are established for Opisthonematidae Yu, 1976, and Opisthonema Yu, 1974, non Gill, 1862 [Pisces]. The new family-group name Burnupiidae Albrecht is established in this work; and the names Scolodontina and Orthalicoidei are first used here to denote, respectively, a suborder containing the family Scolodontidae, and an infraorder containing the superfamily Orthalicoidea.

399 citations