scispace - formally typeset
Search or ask a question
Author

Da Luo

Other affiliations: Chinese Academy of Sciences
Bio: Da Luo is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Gene & Gene silencing. The author has an hindex of 1, co-authored 1 publications receiving 530 citations. Previous affiliations of Da Luo include Chinese Academy of Sciences.

Papers
More filters
Journal Article•DOI•
TL;DR: It is shown in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide and plays an additional role in promoting the editing of atp 6 mRNAs, independent of its cleavage function.
Abstract: Cytoplasmic male sterility (CMS) and nucleus-controlled fertility restoration are widespread plant reproductive features that provide useful tools to exploit heterosis in crops. However, the molecular mechanism underlying this kind of cytoplasmic-nuclear interaction remains unclear. Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide. Expression of orf79 in CMS lines and transgenic rice plants caused gametophytic male sterility. Immunoblot analysis showed that the ORF79 protein accumulates specifically in microspores. Two fertility restorer genes, Rf1a and Rf1b, were identified at the classical locus Rf-1 as members of a multigene cluster that encode pentatricopeptide repeat proteins. RF1A and RF1B are both targeted to mitochondria and can restore male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation (RF1B) of dicistronic B-atp6/orf79 mRNA. In the presence of both restorers, RF1A was epistatic over RF1B in the mRNA processing. We have also shown that RF1A plays an additional role in promoting the editing of atp6 mRNAs, independent of its cleavage function.

568 citations


Cited by
More filters
Journal Article•DOI•
TL;DR: Several recent papers are discussed that cover the evolutionary history and molecular mode of action of Pentatricopeptide repeat proteins, and propose hypotheses for their physiological roles that could explain why PPR proteins are so numerous in terrestrial plants.

772 citations

Journal Article•DOI•
TL;DR: Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Abstract: Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.

754 citations

Journal Article•DOI•
TL;DR: Recent advances in elucidating the intracellular signalling pathways that coordinate gene expression between organelles and the nucleus are reviewed, with a focus on photosynthetic plants.
Abstract: Following the acquisition of chloroplasts and mitochondria by eukaryotic cells during endosymbiotic evolution, most of the genes in these organelles were either lost or transferred to the nucleus. Encoding organelle-destined proteins in the nucleus allows for host control of the organelle. In return, organelles send signals to the nucleus to coordinate nuclear and organellar activities. In photosynthetic eukaryotes, additional interactions exist between mitochondria and chloroplasts. Here we review recent advances in elucidating the intracellular signalling pathways that coordinate gene expression between organelles and the nucleus, with a focus on photosynthetic plants.

606 citations

Journal Article•DOI•
TL;DR: Recent research on CMS and EGMS systems in crops are reviewed, general models of male sterility and fertility restoration are summarized, and the evolutionary significance of these reproductive systems are discussed.
Abstract: In plants, male sterility can be caused either by mitochondrial genes with coupled nuclear genes or by nuclear genes alone; the resulting conditions are known as cytoplasmic male sterility (CMS) and genic male sterility (GMS), respectively. CMS and GMS facilitate hybrid seed production for many crops and thus allow breeders to harness yield gains associated with hybrid vigor (heterosis). In CMS, layers of interaction between mitochondrial and nuclear genes control its male specificity, occurrence, and restoration of fertility. Environment-sensitive GMS (EGMS) mutants may involve epigenetic control by noncoding RNAs and can revert to fertility under different growth conditions, making them useful breeding materials in the hybrid seed industry. Here, we review recent research on CMS and EGMS systems in crops, summarize general models of male sterility and fertility restoration, and discuss the evolutionary significance of these reproductive systems.

556 citations

Journal Article•DOI•
TL;DR: The nature and the origin of the genes that determine plant trait cytoplasmic male sterility are reviewed, together with recent investigations that have exploited CMS to provide new insights into plant mitochondrial-nuclear communication.

540 citations