scispace - formally typeset
Search or ask a question
Author

Da Wei Fu

Bio: Da Wei Fu is an academic researcher from Southeast University. The author has contributed to research in topics: Dielectric & Materials science. The author has an hindex of 7, co-authored 7 publications receiving 1262 citations. Previous affiliations of Da Wei Fu include Nanyang Technological University.

Papers
More filters
Journal ArticleDOI
25 Jan 2013-Science
TL;DR: DIPAB is a molecular alternative to perovskite ferroelectrics and ferroelectric polymers in sensing, actuation, data storage, electro-optics, and molecular or flexible electronics and exhibits good piezoelectric response and well-defined ferro electric domains.
Abstract: Molecular ferroelectrics are highly desirable for their easy and environmentally friendly processing, light weight, and mechanical flexibility. We found that diisopropylammonium bromide (DIPAB), a molecular crystal processed from aqueous solution, is a ferroelectric with a spontaneous polarization of 23 microcoulombs per square centimeter [close to that of barium titanate (BTO)], high Curie temperature of 426 kelvin (above that of BTO), large dielectric constant, and low dielectric loss. DIPAB exhibits good piezoelectric response and well-defined ferroelectric domains. These attributes make it a molecular alternative to perovskite ferroelectrics and ferroelectric polymers in sensing, actuation, data storage, electro-optics, and molecular or flexible electronics.

641 citations

Journal ArticleDOI
TL;DR: Hydrothermal reaction of (l)-N-(4'-cyanobenzy)-(S)-proline with CdCl2 as a Lewis acid catalyst and NaN3 gives colorless block compound 1, in which 1 displays a complicated 3D framework that makes it, by definition, a high dielectric material.
Abstract: Hydrothermal reaction of (l)-N-(4'-cyanobenzy)-(S)-proline with CdCl2 as a Lewis acid catalyst and NaN3 gives colorless block compound 1, in which 1 displays a complicated 3D framework. Ferroelectric and dielectric property measurements reveal that 1 exhibits physical properties comparable to that of a typical ferroelectric compound with a dipole relaxation process and a dielectric constant of ca. 38.6 that makes it, by definition, a high dielectric material.

399 citations

Journal ArticleDOI
TL;DR: Anisotropic permittivity measurements reveal that 1 exhibits huge dielectric anisotropy along its three different crystal axes that is ca.
Abstract: Hydrothermal reaction of (S)-1,1‘1‘ ‘-2,4,6-trimethylbenzene-1,3,5-triyl-tris(methylene)-tris-pyrrolidine-2-carboxylic acid (TBPLA) with Ni(ClO4)2·6H2O gave pale green block crystals of 1. X-ray crystal structure analysis showed the complex to be a trinuclear descrete homochiral molecule with each Ni center sitting in distorted octahedron geometries. Anisotropic permittivity measurements reveal that 1 exhibits huge dielectric anisotropy along its three different crystal axes that is ca. 3.5 times of er (E//c)/er (E//b) with temperature and frequency independence.

169 citations

Journal ArticleDOI
TL;DR: A thin film of imidazolium perchlorate processed from aqueous solution is an excellent molecular ferroelectric with high spontaneous polarization, high Curie temperature, low coercivity, and superior electromechanical coupling.
Abstract: Molecular ferroelectric thin films are highly desirable for their easy and environmentally friendly processing, light weight, and mechanical flexibility. A thin film of imidazolium perchlorate processed from aqueous solution is an excellent molecular ferroelectric with high spontaneous polarization, high Curie temperature, low coercivity, and superior electromechanical coupling. These attributes make it a molecular alternative to perovskite ferroelectric films in sensing, actuation, data storage, electro-optics, and molecular/flexible electronics.

96 citations

Journal ArticleDOI
TL;DR: In this article, a novel Zn dimer (CBC−N4)2ZnBr2(N3)2(X2O), where the reactant Br- and N3- take part in the coordination to Zn.
Abstract: Hydrothermal [2+3] cycloaddition reactions of N-4‘-caynobenzylcinchonidine bromide (CBCBr) with NaN3 in the presence of ZnBr2 offer a novel Zn dimer (CBC−N4)2ZnBr2(N3)2(X2O), X = H for 1 and D for 2) in which the reactant Br- and N3- take part in the coordination to Zn. The measurements of ferroelectricity and permittivity of 1 and 2 show that there exists a large deuterated effect both in ferroelectric behavior (40% increase) and in dielectric constant (2.75 times increase), which is unprecedented in metal coordination compounds.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract: Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

7,186 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a compendium of all relevant ligands that have been employed to generate coordination polymers and metal-Organic Frameworks (MOFs), and three representative examples for each category are described in detail.

839 citations

Journal ArticleDOI
TL;DR: Through the combination of molecular synthesis and crystal engineering, MOFs present an unprecedented opportunity for the rational and precise design of functional materials.
Abstract: Metal–organic frameworks (MOFs), also known as coordination polymers, represent an interesting class of crystalline molecular materials that are synthesized by combining metal-connecting points and bridging ligands. The modular nature of and mild conditions for MOF synthesis have permitted the rational structural design of numerous MOFs and the incorporation of various functionalities via constituent building blocks. The resulting designer MOFs have shown promise for applications in a number of areas, including gas storage/separation, nonlinear optics/ferroelectricity, catalysis, energy conversion/storage, chemical sensing, biomedical imaging, and drug delivery. The structure–property relationships of MOFs can also be readily established by taking advantage of the knowledge of their detailed atomic structures, which enables fine-tuning of their functionalities for desired applications. Through the combination of molecular synthesis and crystal engineering, MOFs thus present an unprecedented opportunity fo...

752 citations

Journal ArticleDOI
TL;DR: An overview of the current status of the application of these two types of advanced porous materials in the storage of methane is provided, and methods for increasing the applicability of these advanced porous material in methane storage technologies described are described.
Abstract: The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal–organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described.

709 citations

Journal ArticleDOI
TL;DR: This study obtained a myriad interesting metal-organic coordination polymers that not only partially showed the role of the metal species in the synthesis of tetrazole compounds but also provided a class of complexes displaying interesting chemical and physical properties.
Abstract: Tetrazole compounds have been studied for more than one hundred years and applied in various areas. Several yeas ago Sharpless and his co-workers reported an environmentally friendly process for the preparation of 5-substituted 1H-tetrazoles in water with zinc salt as catalysts. To reveal the exact role of the zinc salt in this reaction, a series of hydrothermal reactions aimed at trapping and characterizing the solid intermediates were investigated. This study allowed us to obtain a myriad interesting metal–organic coordination polymers that not only partially showed the role of the metal species in the synthesis of tetrazole compounds but also provided a class of complexes displaying interesting chemical and physical properties such as second harmonic generation (SHG), fluorescence, ferroelectric and dielectric behaviors. In this tutorial review, we will mainly focus on tetrazole coordination compounds synthesized by in situhydrothermal methods. First, we will discuss the synthesis and crystal structures of these compounds. Their various properties will be mentioned and we will show the applications of tetrazole coordination compounds in organic synthesis. Finally, we will outline some expectations in this area of chemistry. The direct coordination chemistry of tetrazoles to metal ions and in situ synthesis of tetrazole through cycloaddition between organotin azide and organic cyano group will be not discussed in this review.

702 citations