scispace - formally typeset
Search or ask a question
Author

Dae-Yong Son

Other affiliations: Sungkyunkwan University
Bio: Dae-Yong Son is an academic researcher from Okinawa Institute of Science and Technology. The author has contributed to research in topics: Perovskite (structure) & Perovskite solar cell. The author has an hindex of 22, co-authored 34 publications receiving 5428 citations. Previous affiliations of Dae-Yong Son include Sungkyunkwan University.

Papers
More filters
Journal ArticleDOI
TL;DR: High efficiency perovskite solar cells were fabricated reproducibly via Lewis base adduct of lead(II) iodide through interaction between Lewis base DMSO and/or iodide and Lewis acid PbI2 through spin-coating of a DMF solution.
Abstract: High efficiency perovskite solar cells were fabricated reproducibly via Lewis base adduct of lead(II) iodide. PbI2 was dissolved in N,N-dimethyformamide with equimolar N,N-dimethyl sulfoxide (DMSO) and CH3NH3I. Stretching vibration of S═O appeared at 1045 cm–1 for bare DMSO, which was shifted to 1020 and 1015 cm–1 upon reacting DMSO with PbI2 and PbI2 + CH3NH3I, respectively, indicative of forming the adduct of PbI2·DMSO and CH3NH3I·PbI2·DMSO due to interaction between Lewis base DMSO and/or iodide (I–) and Lewis acid PbI2. Spin-coating of a DMF solution containing PbI2, CH3NH3I, and DMSO (1:1:1 mol %) formed a transparent adduct film, which was converted to a dark brown film upon heating at low temperature of 65 °C for 1 min due to removal of the volatile DMSO from the adduct. The adduct-induced CH3NH3PbI3 exhibited high charge extraction characteristics with hole mobility as high as 3.9 × 10–3 cm2/(V s) and slow recombination rate. Average power conversion efficiency (PCE) of 18.3% was achieved from 41 ...

1,960 citations

Journal ArticleDOI
TL;DR: In this article, a review of the present and the future battery technologies on the basis of the working electrode is presented and an account of a stand-alone energy device (off-grid system) that combines an energy harvesting technology with a lithium-ion battery is also provided.
Abstract: Lithium-ion batteries (LIBs) continue to draw vast attention as a promising energy storage technology due to their high energy density, low self-discharge property, nearly zero-memory effect, high open circuit voltage, and long lifespan. In particular, high-energy density lithium-ion batteries are considered as the ideal power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs) in the automotive industry, in recent years. This review discusses key aspects of the present and the future battery technologies on the basis of the working electrode. We then discuss how lithium-ion batteries evolve to meet the growing demand on high charge capacity and electrode stability. An account of a stand-alone energy device (off-grid system) that combines an energy harvesting technology with a lithium-ion battery is also provided. The main discussion is categorized into three perspectives such as the evolution from the conventional to the advanced LIBs (e.g., Li-rich transition metal oxide and Ni-rich transition metal oxide batteries), to the state-of-the-art LIBs (e.g., Li–air, Li–sulfur batteries, organic electrode batteries, solid-state batteries, and Li–CO2 batteries), and to the hybridized LIBs (e.g., metal halide perovskite batteries).

976 citations

Journal ArticleDOI
TL;DR: In this article, the grain boundaries in thin-film perovskite solar cells are passedivated by using excess CH3NH3I in the precursor solution, achieving an average power conversion efficiency of 20.1% over 50 cells (best cell at 20.4%).
Abstract: Perovskite solar cells have attracted significant research efforts due to their remarkable performance, with certified power conversion efficiency now reaching 22%. Solution-processed perovskite thin films are polycrystalline, and grain boundaries are thought to be responsible for causing recombination and trapping of charge carriers. Here we report an effective and reproducible way of treating grain boundaries in CH3NH3PbI3 films deposited by means of a Lewis acid–base adduct approach. We show by high-resolution transmission electron microscopy lattice images that adding 6 mol% excess CH3NH3I to the precursor solution resulted in a CH3NH3I layer forming at the grain boundaries. This layer is responsible for suppressing non-radiative recombination and improving hole and electron extraction at the grain boundaries by forming highly ionic-conducting pathways. We report an average power conversion efficiency of 20.1% over 50 cells (best cell at 20.4%) together with significantly reduced current–voltage hysteresis achieved by this grain boundary healing process. The grain boundaries in thin-film perovskite solar cells are responsible for non-radiative carrier recombination, which is deleterious for the optoelectronic performance. Son et al. show how to passivate the grain boundaries by using excess CH3NH3I in the precursor solution, achieving efficiencies of 20.4%.

855 citations

Journal ArticleDOI
04 Oct 2017-Nature
TL;DR: An all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.
Abstract: Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

680 citations

Journal ArticleDOI
TL;DR: A universal approach for hysteresis-free perovskite solar cells via defect engineering via KI doping and a series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for Hysteres is-freeperovskites.
Abstract: Organic–inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)–voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J–V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH3NH3PbI3 and HC(NH2)2PbI3, and the mixed cation/anion perovskites, FA0.85MA0.15PbI2.55Br0.45 and FA0.85MA0.1Cs0.05PbI2.7Br0.3, with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is ...

637 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
17 Feb 2017-Science
TL;DR: A contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells is reported.
Abstract: Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

1,912 citations

Journal ArticleDOI
TL;DR: Jeon et al. as discussed by the authors synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable perovskite solar cells.
Abstract: Perovskite solar cells (PSCs) require both high efficiency and good long-term stability if they are to be commercialized. It is crucial to finely optimize the energy level matching between the perovskites and hole-transporting materials to achieve better performance. Here, we synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable PSCs. We use this material to fabricate photovoltaic devices with 23.2% efficiency (under reverse scanning) with a steady-state efficiency of 22.85% for small-area (~0.094 cm2) cells and 21.7% efficiency (under reverse scanning) for large-area (~1 cm2) cells. We also achieve certified efficiencies of 22.6% (small-area cells, ~0.094 cm2) and 20.9% (large-area, ~1 cm2). The resultant device shows better thermal stability than the device with spiro-OMeTAD, maintaining almost 95% of its initial performance for more than 500 h after thermal annealing at 60 °C. Interfacial losses between device layers play a key role in determining characteristics of solar cells. Jeon et al. address this in perovskite solar cells by synthesizing a hole-transporting layer that is better matched to the surrounding layers, and show high-efficiency and high-stability devices.

1,771 citations

Journal ArticleDOI
TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Abstract: The photovoltaics of organic–inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regardi...

1,720 citations

Journal ArticleDOI
05 Apr 2021-Nature
TL;DR: In this paper, the pseudo-halide anion formate (HCOO−) was used to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films.
Abstract: Metal halide perovskites of the general formula ABX3—where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion—have shown great potential as light harvesters for thin-film photovoltaics1–5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6–9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO−) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance. Incorporation of the pseudo-halide anion formate during the fabrication of α-FAPbI3 perovskite films eliminates deleterious iodide vacancies, yielding solar cell devices with a certified power conversion efficiency of 25.21 per cent and long-term operational stability.

1,616 citations