scispace - formally typeset
Search or ask a question
Author

Dah-Jing Jwo

Bio: Dah-Jing Jwo is an academic researcher from National Taiwan Ocean University. The author has contributed to research in topics: Extended Kalman filter & Kalman filter. The author has an hindex of 19, co-authored 58 publications receiving 1006 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel scheme called the adaptive fuzzy strong tracking Kalman filter (AFSTKF) is carried out, which is essentially a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved.
Abstract: The well-known extended Kalman filter (EKF) has been widely applied to the Global Positioning System (GPS) navigation processing. The adaptive algorithm has been one of the approaches to prevent the divergence problem of the EKF when precise knowledge on the system models are not available. One of the adaptive methods is called the strong tracking Kalman filter (STKF), which is essentially a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved. Traditional approach for selecting the softening factors heavily relies on personal experience or computer simulation. In order to resolve this shortcoming, a novel scheme called the adaptive fuzzy strong tracking Kalman filter (AFSTKF) is carried out. In the AFSTKF, the fuzzy logic reasoning system based on the Takagi-Sugeno (T-S) model is incorporated into the STKF. By monitoring the degree of divergence (DOD) parameters based on the innovation information, the fuzzy logic adaptive system (FLAS) is designed for dynamically adjusting the softening factor according to the change in vehicle dynamics. GPS navigation processing using the AFSTKF will be simulated to validate the effectiveness of the proposed strategy. The performance of the proposed scheme will be assessed and compared with those of conventional EKF and STKF

170 citations

Journal ArticleDOI
TL;DR: The neural network (NN)-based navigation satellite subset selection is presented, based on approximation or classification of the satellite geometry dilution of precision (GDOP) factors utilizing the NN approach, which is capable of evaluating all subsets of satellites and hence reduces the computational burden.
Abstract: In this paper, the neural network (NN)-based navigation satellite subset selection is presented The approach is based on approximation or classification of the satellite geometry dilution of precision (GDOP) factors utilizing the NN approach Without matrix inversion required, the NN-based approach is capable of evaluating all subsets of satellites and hence reduces the computational burden This would enable the use of a high-integrity navigation solution without the delay required for many matrix inversions For overcoming the problem of slow learning in the BPNN, three other NNs that feature very fast learning speed, including the optimal interpolative (OI) Net, probabilistic neural network (PNN) and general regression neural network (GRNN), are employed The network performance and computational expense on NN-based GDOP approximation and classification are explored All the networks are able to provide sufficiently good accuracy, given enough time (for BPNN) or enough training data (for the other three networks)

80 citations

Journal ArticleDOI
TL;DR: The proposed FASTUKF algorithm can be considered as an alternative approach for designing the ultra tightly coupled GPS/INS integrated navigation system.
Abstract: This paper conducts performance evaluation for the ultra-tight integration of Global positioning system (GPS) and inertial navigation system (INS) by use of the fuzzy adaptive strong tracking unscented Kalman filter (FASTUKF). An ultra-tight GPS/INS integration architecture involves fusion of the in-phase and quadrature components from the correlator of the GPS receiver with the INS data. These two components are highly nonlinearly related to the navigation states. The strong tracking unscented Kalman filter (STUKF) is based on the combination of an unscented Kalman filter (UKF) and strong tracking algorithm (STA) to perform the parameter adaptation task for various dynamic characteristics. The STA is basically a nonlinear smoother algorithm that employs suboptimal multiple fading factors, in which the softening factors are involved. In order to resolve the shortcoming in a traditional approach for selecting the softening factor through personal experience or computer simulation, the Fuzzy Logic Adaptive System (FLAS) is incorporated for determining the softening factor, leading to the FASTUKF. Two examples are provided for illustrating the effectiveness of the design and demonstrating effective improvement in navigation estimation accuracy and, therefore, the proposed FASTUKF algorithm can be considered as an alternative approach for designing the ultra tightly coupled GPS/INS integrated navigation system.

70 citations

Journal ArticleDOI
TL;DR: In this article, an approach involving the concept of the two methods is presented, which is a synergy of the innovation-based adaptive estimation (IAE) and adaptive fading Kalman filter (AFKF) approaches.
Abstract: The Kalman filter (KF) is a form of optimal estimator characterized by recursive evaluation, which has been widely applied to the navigation sensor fusion. Utilizing the KF requires that all the plant dynamics and noise processes are completely known, and the noise process is zero mean white noise. If the theoretical behaviour of the filter and its actual behaviour do not agree, divergence problems tend to occur. The adaptive algorithm has been one of the approaches to prevent divergence problems in the Kalman filter when precise knowledge on the system models is not available. Two popular types of adaptive Kalman filter are the innovation-based adaptive estimation (IAE) approach and the adaptive fading Kalman filter (AFKF) approach. In this paper, an approach involving the concept of the two methods is presented. The proposed method is a synergy of the IAE and AFKF approaches. The ratio of the actual innovation covariance based on the sampled sequence to the theoretical innovation covariance will be employed for dynamically tuning two filter parameters – fading factors and measurement noise scaling factors. The method has the merits of good computational efficiency and numerical stability. The matrices in the KF loop are able to remain positive definitive. Navigation sensor fusion using the proposed scheme will be demonstrated. Performance of the proposed scheme on the loosely coupled GPS/INS navigation applications will be discussed.

62 citations

Journal ArticleDOI
TL;DR: Consistency check between the filter-calculated covariances versus actual mean square errors are provided, which can be used not only as a verification procedure for the filtering correctness, but also as a approach for making trade-off in designing a suitable Kalman filter.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of the information sources and information fusion technologies used in current in-car navigation systems is presented and the pros and cons of the four commonly used information sources are described.
Abstract: In-car positioning and navigation has been a killer application for Global Positioning System (GPS) receivers, and a variety of electronics for consumers and professionals have been launched on a large scale. Positioning technologies based on stand-alone GPS receivers are vulnerable and, thus, have to be supported by additional information sources to obtain the desired accuracy, integrity, availability, and continuity of service. A survey of the information sources and information fusion technologies used in current in-car navigation systems is presented. The pros and cons of the four commonly used information sources, namely, 1) receivers for radio-based positioning using satellites, 2) vehicle motion sensors, 3) vehicle models, and 4) digital map information, are described. Common filters to combine the information from the various sources are discussed. The expansion of the number of satellites and the number of satellite systems, with their usage of available radio spectrum, is an enabler for further development, in combination with the rapid development of microelectromechanical inertial sensors and refined digital maps.

524 citations

Journal ArticleDOI
TL;DR: A thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost is undertaken.
Abstract: As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.

410 citations

01 Jan 2006

384 citations

Journal ArticleDOI
TL;DR: In this paper, a Wiener-process-based degradation model with a recursive filter algorithm is developed to estimate the remaining useful life estimation (RUL) from the observed degradation data.

370 citations

01 May 2010
TL;DR: It was found that the constructed RBF exhibited a high performance than MLP, ANFIS and MR for predicting S%.
Abstract: Research highlights? The use of multiple regression (MR), artificial neural network (ANN) and artificial neuro-fuzzy inference system (ANFIS) models, for the prediction of swell percent of soils, was described and compared. ? However the accuracies of ANN and ANFIS models may be evaluated relatively similar, it is shown that the constructed ANN models of RBF and MLP exhibit a high performance than ANFIS and multiple regression for predicting swell percent of clays. ? The performance comparison showed that the soft computing system is a good tool for minimizing the uncertainties in the soil engineering projects. ? The use of soft computing will also may provide new approaches and methodologies, and minimize the potential inconsistency of correlations. In the recent years, new techniques such as; artificial neural networks and fuzzy inference systems were employed for developing of the predictive models to estimate the needed parameters. Soft computing techniques are now being used as alternate statistical tool. Determination of swell potential of soil is difficult, expensive, time consuming and involves destructive tests. In this paper, use of MLP and RBF functions of ANN (artificial neural networks), ANFIS (adaptive neuro-fuzzy inference system) for prediction of S% (swell percent) of soil was described, and compared with the traditional statistical model of MR (multiple regression). However the accuracies of ANN and ANFIS models may be evaluated relatively similar. It was found that the constructed RBF exhibited a high performance than MLP, ANFIS and MR for predicting S%. The performance comparison showed that the soft computing system is a good tool for minimizing the uncertainties in the soil engineering projects. The use of soft computing will also may provide new approaches and methodologies, and minimize the potential inconsistency of correlations.

364 citations