scispace - formally typeset
Search or ask a question
Author

Dah Ming Chiu

Bio: Dah Ming Chiu is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Wireless network & The Internet. The author has an hindex of 45, co-authored 221 publications receiving 15600 citations. Previous affiliations of Dah Ming Chiu include Sun Microsystems & Sun Microsystems Laboratories.


Papers
More filters
Posted Content
TL;DR: A quantitative measure called Indiex of FRairness, applicable to any resource sharing or allocation problem, which is independent of the amount of the resource, and boundedness aids intuitive understanding of the fairness index.
Abstract: Fairness is an important performance criterion in all resource allocation schemes, including those in distributed computer systems However, it is often specified only qualitatively The quantitative measures proposed in the literature are either too specific to a particular application, or suffer from some undesirable characteristics In this paper, we have introduced a quantitative measure called Indiex of FRairness The index is applicable to any resource sharing or allocation problem It is independent of the amount of the resource The fairness index always lies between 0 and 1 This boundedness aids intuitive understanding of the fairness index For example, a distribution algorithm with a fairness of 010 means that it is unfair to 90% of the users Also, the discrimination index can be defined as 1 - fairness index

4,476 citations

Journal ArticleDOI
TL;DR: It is shown that a simple additive increase and multiplicative decrease algorithm satisfies the sufficient conditions for con- vergence to an efficient and fair state regardless of the starting state of the network.
Abstract: Congestion avoidance mechanisms allow a network to operate in the optimal region of low delay and high throughput, thereby, preventing the network from becoming congested. This is different from the traditional congestion control mechanisms that allow the network to recover from the congested state of high delay and low throughput. Both con- gestion avoidance and congestion control mechanisms are basi- cally resource management problems. They can be formulated as system control problems in which the system senses its state and feeds this back to its users who adjust their controls. The key component of any congestion avoidance scheme is the algorithm (or control function) used by the users to in- crease or decrease their load (window or rate). We abstractly characterize a wide class of such increase/decreas e algorithms and compare them using several different performance metrics. They key metrics are efficiency, fairness, convergence time, and size of oscillations. It is shown that a simple additive increase and multiplicative decrease algorithm satisfies the sufficient conditions for con- vergence to an efficient and fair state regardless of the starting state of the network. This is the algorithm finally chosen for implementation in the congestion avoidance scheme recom- mended for Digital Networking Architecture and OSI Trans- port Class 4 Networks.

1,847 citations

Journal Article
TL;DR: In this article, it is shown that a simple additive increase and multiplicative decrease algorithm satisfies the sufficient conditions for con- vergence to an efficient and fair state regardless of the starting state of the network.

1,757 citations

01 Jan 1998
TL;DR: Indiex of Fairness as mentioned in this paper is a quantitative measure that is applicable to any resource sharing or allocation problem, and it is independent of the amount of the resource and the fairness index always lies between 0 and 1.
Abstract: Fairness is an important performance criterion in all resource allocation schemes, including those in distributed computer systems. However, it is often specified only qualitatively. The quantitative measures proposed in the literature are either too specific to a particular application, or suffer from some undesirable characteristics. In this paper, we have introduced a quantitative measure called Indiex of FRairness. The index is applicable to any resource sharing or allocation problem. It is independent of the amount of the resource. The fairness index always lies between 0 and 1. This boundedness aids intuitive understanding of the fairness index. For example, a distribution algorithm with a fairness of 0.10 means that it is unfair to 90% of the users. Also, the discrimination index can be defined as 1 - fairness index.

1,064 citations

Journal ArticleDOI
17 Aug 2008
TL;DR: The challenges and the architectural design issues of a large-scale P2P-VoD system based on the experiences of a real system deployed by PPLive are discussed and a number of results on user behavior, various system performance metrics, including user satisfaction, are presented.
Abstract: P2P file downloading and streaming have already become very popular Internet applications. These systems dramatically reduce the server loading, and provide a platform for scalable content distribution, as long as there is interest for the content. P2P-based video-on-demand (P2P-VoD) is a new challenge for the P2P technology. Unlike streaming live content, P2P-VoD has less synchrony in the users sharing video content, therefore it is much more difficult to alleviate the server loading and at the same time maintaining the streaming performance. To compensate, a small storage is contributed by every peer, and new mechanisms for coordinating content replication, content discovery, and peer scheduling are carefully designed. In this paper, we describe and discuss the challenges and the architectural design issues of a large-scale P2P-VoD system based on the experiences of a real system deployed by PPLive. The system is also designed and instrumented with monitoring capability to measure both system and component specific performance metrics (for design improvements) as well as user satisfaction. After analyzing a large amount of collected data, we present a number of results on user behavior, various system performance metrics, including user satisfaction, and discuss what we observe based on the system design. The study of a real life system provides valuable insights for the future development of P2P-VoD technology.

618 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations

Journal ArticleDOI
TL;DR: Red gateways are designed to accompany a transport-layer congestion control protocol such as TCP and have no bias against bursty traffic and avoids the global synchronization of many connections decreasing their window at the same time.
Abstract: The authors present random early detection (RED) gateways for congestion avoidance in packet-switched networks. The gateway detects incipient congestion by computing the average queue size. The gateway could notify connections of congestion either by dropping packets arriving at the gateway or by setting a bit in packet headers. When the average queue size exceeds a present threshold, the gateway drops or marks each arriving packet with a certain probability, where the exact probability is a function of the average queue size. RED gateways keep the average queue size low while allowing occasional bursts of packets in the queue. During congestion, the probability that the gateway notifies a particular connection to reduce its window is roughly proportional to that connection's share of the bandwidth through the gateway. RED gateways are designed to accompany a transport-layer congestion control protocol such as TCP. The RED gateway has no bias against bursty traffic and avoids the global synchronization of many connections decreasing their window at the same time. Simulations of a TCP/IP network are used to illustrate the performance of RED gateways. >

6,198 citations

Journal ArticleDOI
01 Aug 1988
TL;DR: The measurements and the reports of beta testers suggest that the final product is fairly good at dealing with congested conditions on the Internet, and an algorithm recently developed by Phil Karn of Bell Communications Research is described in a soon-to-be-published RFC.
Abstract: In October of '86, the Internet had the first of what became a series of 'congestion collapses'. During this period, the data throughput from LBL to UC Berkeley (sites separated by 400 yards and three IMP hops) dropped from 32 Kbps to 40 bps. Mike Karels1 and I were fascinated by this sudden factor-of-thousand drop in bandwidth and embarked on an investigation of why things had gotten so bad. We wondered, in particular, if the 4.3BSD (Berkeley UNIX) TCP was mis-behaving or if it could be tuned to work better under abysmal network conditions. The answer to both of these questions was “yes”.Since that time, we have put seven new algorithms into the 4BSD TCP: round-trip-time variance estimationexponential retransmit timer backoffslow-startmore aggressive receiver ack policydynamic window sizing on congestionKarn's clamped retransmit backofffast retransmit Our measurements and the reports of beta testers suggest that the final product is fairly good at dealing with congested conditions on the Internet.This paper is a brief description of (i) - (v) and the rationale behind them. (vi) is an algorithm recently developed by Phil Karn of Bell Communications Research, described in [KP87]. (viii) is described in a soon-to-be-published RFC.Algorithms (i) - (v) spring from one observation: The flow on a TCP connection (or ISO TP-4 or Xerox NS SPP connection) should obey a 'conservation of packets' principle. And, if this principle were obeyed, congestion collapse would become the exception rather than the rule. Thus congestion control involves finding places that violate conservation and fixing them.By 'conservation of packets' I mean that for a connection 'in equilibrium', i.e., running stably with a full window of data in transit, the packet flow is what a physicist would call 'conservative': A new packet isn't put into the network until an old packet leaves. The physics of flow predicts that systems with this property should be robust in the face of congestion. Observation of the Internet suggests that it was not particularly robust. Why the discrepancy?There are only three ways for packet conservation to fail: The connection doesn't get to equilibrium, orA sender injects a new packet before an old packet has exited, orThe equilibrium can't be reached because of resource limits along the path. In the following sections, we treat each of these in turn.

5,620 citations

Journal ArticleDOI
TL;DR: This paper analyses the stability and fairness of two classes of rate control algorithm for communication networks, which provide natural generalisations to large-scale networks of simple additive increase/multiplicative decrease schemes, and are shown to be stable about a system optimum characterised by a proportional fairness criterion.
Abstract: This paper analyses the stability and fairness of two classes of rate control algorithm for communication networks. The algorithms provide natural generalisations to large-scale networks of simple additive increase/multiplicative decrease schemes, and are shown to be stable about a system optimum characterised by a proportional fairness criterion. Stability is established by showing that, with an appropriate formulation of the overall optimisation problem, the network's implicit objective function provides a Lyapunov function for the dynamical system defined by the rate control algorithm. The network's optimisation problem may be cast in primal or dual form: this leads naturally to two classes of algorithm, which may be interpreted in terms of either congestion indication feedback signals or explicit rates based on shadow prices. Both classes of algorithm may be generalised to include routing control, and provide natural implementations of proportionally fair pricing.

5,566 citations