scispace - formally typeset
Search or ask a question
Author

Dahryn Trivedi

Bio: Dahryn Trivedi is an academic researcher. The author has contributed to research in topics: Differential scanning calorimetry & Magnesium. The author has an hindex of 36, co-authored 184 publications receiving 4002 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
30 Sep 2015
TL;DR: In this paper, the effect of bio-field treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number was investigated.
Abstract: Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10 while Gr. IIB was stored and analysed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes. First, second and third tube was analysed on day 5, 10 and 15, respectively. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of C. braakii with other bacterial species. The antimicrobial susceptibility and minimum inhibitory concentration showed 39.29% and 15.63% alteration respectively in treated cells of C. braakii as compared to control. Tetracycline showed improved sensitivity pattern, i.e., from resistant to susceptible after biofield treatment, with support of decreased MIC value (>8 to ≤ 4 µg/mL) by two-fold in all the treated samples as compared to the control. Biochemical reactions also showed significant (42.42%) alteration in the treated samples with respect to the control. Biotype numbers with species were substantially changed in Gr. IIA (53131052, Citrobacter freundii complex) on day 10 and in Gr. IIB, Study I (53111052; Citrobacter amalonaticus) on day 159 as compared to the control (77365776; Citrobacter braakii). Moreover, biotype numbers with species were substantially changed in Gr. IIB, Study II after retreatment on day 5 (53111042, Citrobacter amalonaticus) and (53131052; Citrobacter freundii complex) on day 10 and 15 as compared to the control. 16S rDNA analysis showed that the identified microbe as Citrobacter freundii (GenBank Accession Number: DQ517285) with 95% identity. The nearest homolog genus-species of C. braakii was found to be Citrobacter werkmanii (Accession No. AF025373). The results suggested that biofield treatment has a significant impact on C. braakii in lyophilized as well as revived state.

187 citations

Journal ArticleDOI
Abstract: Salicylic acid is a naturally occurring derivative of benzoic acid, and widely used in organic synthesis and as a plant hormone. Sparfloxacin is fluorinated quinolone antibiotic having broad spectrum antimicrobial property. The present study was aimed to evaluate the impact of biofield treatment on spectral properties of salicylic acid and sparfloxacin using FT-IR and UV-Vis spectroscopic techniques. The study was carried out in two groups, one was set to control, and another was subjected to biofield treatment. FT-IR spectrum of treated salicylic acid showed the upstream shifting in wavenumber of C-H stretching from 2999 to 3004 cm-1 and 2831 to 2837 cm-1 and C=O asymmetric stretching vibration from 1670 to 1683 cm-1 and 1652 to 1662 cm-1. The peak intensity in treated salicylic acid at 1558 cm-1 (aromatic C=C stretching) and 1501 cm-1 (C-C stretching) was increased as compared to control. FT-IR spectrum of treated sparfloxacin showed a downstream shifting in wavenumber of C-H stretching from 2961 to 2955 cm-1 and 2848 to 2818 cm-1, and upstream shifting in wavenumber of C=O (pyridone) stretching from 1641 to 1648 cm-1. Besides, increased intensity of peaks in treated sparfloxacin was found at 1628 cm-1 [C=C stretching (pyridone)] and 1507 cm-1 (N-H bending) as compared to control. UV spectrum of biofield treated salicylic acid exhibited a shifting of wavelength (λmax) from 295.8 to 302.4 nm and 231.2 to 234.4 nm, with respect to control. Likewise, biofield treated sparfloxacin showed the shifting in UV wavelength (λmax) from 373.8 to 380.6 nm and 224.2 to 209.2 nm. Over all, the results suggest that alteration in wavenumber of IR peaks in treated samples might be occurred due to biofield induced alteration in force constant and dipole moment of some bonds. The changes in UV wavelength (λmax) of treated sample also support the FT-IR results. Due to alteration in force constant and bond strength, the chemical stability of structure of treated drugs might also be increased, which could be beneficial for self-life of biofield treated drugs.

158 citations

DOI
08 May 2017
TL;DR: In this article, the impact of Biofield Energy (The Trivedi Effect®-Consciousness Energy Healing) Treatment on the herbomineral test formulation and cell medium (DMEM) was evaluated for skin health parameters.
Abstract: Oxidative stress causes serious skin damage that is characterized by ageing, wrinkling, roughness, laxity and pigmentation. In the present work, the impact of Biofield Energy (The Trivedi Effect®-Consciousness Energy Healing) Treatment on the herbomineral test formulation and cell medium (DMEM) was evaluated for skin health parameters. The test formulation was consisted of minerals (zinc chloride, sodium selenate, and sodium molybdate), L-ascorbic acid, herbal (Centella asiatica) extract, and tetrahydrocurcumin (THC). The test formulation and DMEM media were divided into two parts. One part received the Biofield Energy Treatment by Jagdish Singh and was termed as the Biofield Treated (BT) sample, while other was denoted as the untreated (UT) samples. MTT assay showed that test formulation was found safe and nontoxic with greater than 75% cell viability against various tested concentrations. Cell proliferation data using BrdU method showed an improved cell proliferation by 149.13% and 118.80% at 8.75 µg/mL in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively compared with the untreated group. The collagen level was significantly increased by 28.14% and 44.45% at 1.25 and 0.625 µg/mL, respectively in the UT-DMEM + BT-Test formulation compared with the untreated group. The elastin level was increased by 10.38%, 14.66%, and 48.24% at 2.5, 1.25, and 0.625 µg/mL, respectively in the BT-DMEM + UT-Test formulation group, compared with the untreated group. Moreover, melanin synthesis was significantly inhibited by 5.93%, 1.43%, and 1.43% in the UT-DMEM + BT-Test formulation, BT-DMEM + UT-Test formulation, and BT-DMEM + BT-Test formulation groups, respectively at 0.0625 µg/mL compared with the untreated group. However, melanin synthesis was decreased by 11.71% and 15.75% at 0.125 µg/mL in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively. Anti-wrinkling effects exhibited improved cell viability by 17.19% and 28.68% at 2.5 µg/mL in the UT-DMEM + BT-Test formulation and BT-DMEM + BT-Test formulation groups, respectively in HFF-1 cells compared with the untreated group. Wound healing activity using scratch assay showed a significantly improved healing rate upto 5% in the HFF-1 and HaCaT cells lines in the Biofield Energy Healing based test formulation. Overall, the data suggests that The Trivedi Effect® treated test formulation and DMEM has the capacity to improve the skin health and suggests its use in psoriasis, seborrheic dermatitis, skin cancer, rashes from bacterial or fungal infections, and many more skin diseases.

145 citations

Journal ArticleDOI
TL;DR: The overall results envisaged that the biofield energy treatment on the mango trees showed a significant improvement in the morphology, quality and overall productivity along with 100% reduction in the spongy tissue disorder.
Abstract: Alphonso is the most delicious variety of mango (Mangifera indica L.) known for its excellent texture, taste, and richness with vitamins and minerals. The present study was attempted to evaluate the impact of Mr. Trivedi’s biofield energy treatment on morphological characteristics, quality, yield and molecular assessment of mango. A plot of 16 acres lands used for this study with already grown mango trees. This plot was divided into two parts. One part was considered as control, while another part was subjected to Mr. Trivedi’s biofield energy treatment without physically touching and referred as treated. The treated mango trees showed new straight leaves, without any distortion and infection, whereas the control trees showed very few, distorted, infected, and curly leaves. Moreover, the flowering pattern of control trees did not alter; it was on average 8 to 10 inches with more male flowers. However, the flowering pattern of treated trees was completely transformed into compact one being 4 to 5 inches in length and having more female flowers. Additionally, the weight of matured ripened mango was found on an average 275 gm, medium sized with 50% lesser pulp in the control fruits, while the fruits of biofield energy treated trees showed on average weight of 400 gm, large sized and having 75% higher pulp as compared to the control. Apart from morphology, the quality and nutritional components of mango fruits such as acidity content was increased by 65.63% in the treated sample. Vitamin C content in the treated Alphonso mango pulp was 43.75% higher than the pulp obtained from the control mango farm. The spongy tissue content in pulp of the matured ripened mangoes was decreased by 100% for two consecutive years as compared to the control. Moreover, the yield of flowers and fruits in the treated trees were increased about 95.45 and 47.37%, respectively as compared to the control. Besides, the DNA fingerprinting data using RAPD revealed that the treated sample did not show any true polymorphism as compared to the control. The overall results envisaged that the biofield energy treatment on the mango trees showed a significant improvement in the morphology, quality and overall productivity along with 100% reduction in the spongy tissue disorder. In conclusion, the biofield energy treatment could be used as an alternative way to increase the production of quality mangoes.

140 citations

Posted Content
01 Jul 2017-viXra
TL;DR: The Trivedi Effect®-Energy of Consciousness Healing Treatment on magnesium gluconate was described in this article, where the trivedi effect was applied on the sample of the Biofield Energy Treated sample.
Abstract: Magnesium gluconate is a pharmaceutical/nutraceutical compound used as a source of magnesium ion. The recent study described the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment on magnesium gluconate for the variation in physicochemical, structural, thermal and behavioral properties using PXRD, PSD, FT-IR, UV-vis spectroscopy, TGA, and DSC analysis. Magnesium gluconate was divided into two parts – one part was control without any Biofield Energy Treatment, while another part was treated with The Trivedi Effect®-Energy of Consciousness Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The PXRD analysis exhibited that the crystallite size of the treated sample was remarkably altered from -70% to 130% compared with the control sample. The average crystallite size was significantly decreased by 23.74% in the treated sample compared to the control sample. Biofield Energy Healing Treatment significantly reduced the particle size of magnesium gluconate at d10, d50, and d90 values by 12.15%, 8.98% and 15.35%, respectively compared to the control sample. The surface area analysis showed that surface area of the treated sample was significantly increased by 11.76% compared with the control sample. The FT-IR and UV-vis analysis displayed that structure of the magnesium gluconate persisted identical in both the treated and control samples. The TGA analysis exhibited four steps thermal degradation in both samples and the total weight loss of the Biofield Energy Treated sample was reduced by 0.19% compared with the control sample. The melting temperature of the Biofield Energy Treated sample (171.25oC) was slightly (0.16%) higher from the control sample (170.97oC). The latent heat of fusion was significantly decreased by 7.76% in the treated sample compared to the control sample. The TGA and DSC analysis revealed that the thermal stability of the treated sample was enhanced compared with the control sample. The current study revealed that The Trivedi Effect®-Energy of Consciousness Healing Treatment might produce a new polymorphic form of magnesium gluconate, which could be more soluble and bioavailable along with improved thermal stability compared with the untreated compound. The Biofield Treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, The Trivedi Effect® Treated magnesium gluconate would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic responses against inflammatory diseases, immunological disorders, stress, aging, and other chronic infections.

135 citations


Cited by
More filters
Book ChapterDOI
22 Apr 2012
TL;DR: In this article, the electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR), microwaves, and radio waves.
Abstract: Spectroscopy is the study of matter interacting with electromagnetic radiation (e.g., light). The electromagnetic spectrum in Figure 1 illustrates the many different types of electromagnetic radiation, including gamma rays (γ-rays), X-rays, ultraviolet (UV) radiation, visible light, infrared (IR) radiation, microwaves, and radio waves. The frequency (ν) and wavelength (λ) ranges associated with each form of radiant energy are also indicated in Figure 1.

849 citations

01 Jan 2012
TL;DR: In Hrvatskoj nikada nije bilo oplemenjivackih programa za povrce, vec su sorte kreirane entuzijazmom autora kao "sporedni" proizvod znanstveno-istraživackog rada na povrcu.
Abstract: U Hrvatskoj nikada nije bilo oplemenjivackih programa za povrce, vec su sorte kreirane entuzijazmom autora kao "sporedni" proizvod znanstveno-istraživackog rada na povrcu. Na Sortnoj listi poljoprivrednog bilja RH, zakljucno s 2010. godinom, ima 17 sorti povrca koje su kreirane i upisane u listu od 1964. godine.

428 citations

Journal ArticleDOI
TL;DR: Torrence as mentioned in this paper proposed a dynamical theory of the electromagnetic field and identified light as an electromagnetic disturbance in the form of waves propagated through the electromagnetic fields according to electromagnetic laws.
Abstract: T F Torrence (ed) 1982 Edinburgh: Scottish Academic Press xiii + 103 pp price £7.50 In 1865 James Clerk Maxwell published in the Philosophical Transactions a long paper entitled 'A dynamical theory of the electromagnetic field'. In this work, about which he wrote to a relative, 'I have a paper afloat, with an electromagnetic theory of light, which, till I am convinced of the contrary, Ihold to be great guns', he set up the electromagnetic field equations unifying electricity and magnetism, and identified light as 'an electromagnetic disturbance in the form of waves propagated through the electromagnetic field according to electromagnetic laws'.

408 citations

Posted Content
01 Jul 2016-viXra
TL;DR: Data suggests that biofield treatment has significantly increased the cell death rate of treated GBM cells and simultaneously boost the viability of normal brain cells and could be a suitable alternate treatment strategy for cancer patients in near future.
Abstract: Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Similarly, human normal brain cultured cells (non-GBM) were taken and divided into two groups viz. nonGBM control and non-GBM treatment. The GBM and non-GBM treatment groups were given Mr. Trivedi’s biofield treatment for the assessment of its potential. Two time-lapse (10 hours prior; 10 hours after) video microscopy experiment was performed on tumor and non-tumor brain cells in six replicate (n=6). For each microscopic field, the total cell number was counted and each cell was tracked over the 20 hours period. The potential impact of biofield treatment was assessed by comparing cell death rate in both GBM and non-GBM cells before and after biofield treatment. Results: GBM control cells showed a basal level of cell death 10 hours prior and 10 hours after the biofield treatment, and the rate remained unchanged over the 20 hours period, while in treatment group of GBM, cell death rate was exponentially increased (41%) after biofield treatment as compared to control. The treated non-GBM cultured cells showed a significant reduction (64%) of cell death rate i.e. protective effects as compared to non-GBM control. Conclusion: Altogether, data suggests that biofield treatment has significantly increased the cell death rate of treated GBM cells and simultaneously boost the viability of normal brain cells. Therefore, biofield treatment could be a suitable alternate treatment strategy for cancer patients in near future.

261 citations

01 Jan 1987
TL;DR: The authors examines the relationships between nature and language, colonial and native cultures, and extinction and memory, and in doing so presents a unique vision of our place in an ancient, fragile living world.
Abstract: BEN KESSLER In the midst of ecological catastrophe, indigenous persecution, and the attempted mechanization of the living world, the beauty of the earth remains defiantly vibrant. The voice of the world still speaks in tongues of wind and water, feather and flame, whether we listen or not. Alternately lyric and scientific, critical and moving, Kessler examines the relationships between nature and language, colonial and native cultures, and extinction and memory, and in doing so presents a unique vision of our place in an ancient, fragile living world.

173 citations