scispace - formally typeset
Search or ask a question
Author

Daisuke Hayasaka

Bio: Daisuke Hayasaka is an academic researcher from Kindai University. The author has contributed to research in topics: Vegetation & Fipronil. The author has an hindex of 11, co-authored 39 publications receiving 665 citations. Previous affiliations of Daisuke Hayasaka include National Institute for Environmental Studies & Yokohama National University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the current extent of aquatic contamination by neonicotinoid insecticides is reviewed and the findings contrasted with the known acute and chronic toxicity of these chemicals to various aquatic organisms.
Abstract: The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognised, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb) range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

178 citations

Journal ArticleDOI
TL;DR: It is concluded that realistic prediction and assessment of pesticide effects at the community level should also include the long-term ecological risks of their residues whenever these persist in paddies over a year.

123 citations

Journal ArticleDOI
TL;DR: Differences in susceptibility of five cladocerans to the neonicotinoid imidacloprid and the phenyl-pyrazole fipronil were examined based on short-term, semi-static acute immobilization exposure tests and it is proposed that Ceriodaphnia sp.
Abstract: Differences in susceptibility of five cladocerans to the neonicotinoid imidacloprid and the phenyl-pyrazole fipronil, which have been dominantly used in rice fields of Japan in recent years, were examined based on short-term (48-h), semi-static acute immobilization exposure tests. Additionally, we compared the species sensitivity distribution (SSD) patterns of both insecticides between two sets of species: the five tested cladocerans and all other aquatic organisms tested so far, using data from the ECOTOX database of U.S. Environmental Protection Agency (USEPA). The sensitivity of the test species to either imidacloprid or fipronil was consistent, spanning similar orders of magnitude (100 times). At the genus level, sensitivities to both insecticides were in the following descending order: Ceriodaphnia > Moina > Daphnia. A positive relationship was found between body lengths of each species and the acute toxicity (EC50) of the insecticides, in particular fipronil. Differences in SSD patterns of imidacloprid were found between the species groups compared, indicating that test cladocerans are much less susceptible than other aquatic species including amphibians, crustaceans, fish, insects, mollusks and worms. However, the SSD patterns for fipronil indicate no difference in sensitivity between cladocerans tested and other aquatic organisms despite the greater exposure, which overestimates the results, of our semi-static tests. From these results, Ceriodaphnia sp. should be considered as more sensitive bioindicators (instead of the standard Daphnia magna) for ecotoxicological assessments of aquatic ecosystems. In addition, we propose that ecotoxicity data associated with differences in susceptibility among species should be investigated whenever pesticides have different physicochemical properties and mode of action.

67 citations

Journal ArticleDOI
TL;DR: It is suggested that differences in the duration of the recovery process among groups of species are due to different physicochemical properties of the insecticides.
Abstract: The environmental risks of pesticides are typically determined by laboratory single-species tests based on OECD test guidelines, even if biodiversity should also be taken into consideration. To evaluate how realistic these assessments are, ecological changes caused by the systemic insecticides imidacloprid and fipronil, which have different physicochemical properties, when applied at recommended commercial rates on rice fields were monitored using experimental paddy mesocosms. A total of 178 species were observed. There were no significant differences in abundance of crop arthropods among the experimental paddies. However, zooplankton, benthic and neuston communities in imidacloprid-treated field had significantly less abundance of species than control and fipronil fields. Significant differences in abundance of nekton community were also found between both insecticide-treated paddies and control. Influences on the growth of medaka fish were also found in both adults and their fries. Both Principal Response Curve analysis (PRC) and Detrended Correspondence Analysis (DCA) showed the time series variations in community structure among treatments, in particular for imidacloprid during the middle stage of the experimental period. These results show the ecological effect-concentrations (LOEC ~ 1 μg/l) of these insecticides in mesocosms, especially imidacloprid, are clearly different from their laboratory tests. We suggest that differences in the duration of the recovery process among groups of species are due to different physicochemical properties of the insecticides. Therefore, realistic prediction and assessment of pesticide effects at the community level should consider not only the sensitivity traits and interaction among species but also the differences in physicochemical characteristics of each pesticide.

66 citations

Journal ArticleDOI
TL;DR: Impacts of two neonicotinoid insecticides on aquatic insect assemblages were evaluated in experimental rice mesocosms and imidacloprid had higher impacts on aquatic insects compared to dinotefuran.

40 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of 73 historical reports of insect declines from across the globe, and systematically assess the underlying drivers of insect extinction, reveals dramatic rates of decline that may lead to the extinction of 40% of the world's insect species over the next few decades.

1,754 citations

Journal ArticleDOI

1,571 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the global literature explores these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Abstract: Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.

1,131 citations

Journal ArticleDOI
TL;DR: It appears that environmentally relevant concentrations of neonicotinoids in surface waters worldwide are well within the range where both short- and long-term impacts on aquatic invertebrate species are possible over broad spatial scales.

873 citations

Journal ArticleDOI
TL;DR: Enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Abstract: We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.

649 citations