scispace - formally typeset
Search or ask a question
Author

Daisuke Ueda

Other affiliations: Kyoto Institute of Technology
Bio: Daisuke Ueda is an academic researcher from Panasonic. The author has contributed to research in topics: Transistor & Gallium nitride. The author has an hindex of 29, co-authored 115 publications receiving 3867 citations. Previous affiliations of Daisuke Ueda include Kyoto Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a gate injection transistor (GIT) was proposed to increase the electron density in the channel, resulting in a dramatic increase of the drain current owing to the conductivity modulation.
Abstract: We have developed a normally-off GaN-based transistor using conductivity modulation, which we call a gate injection transistor (GIT). This new device principle utilizes hole-injection from the p-AlGaN to the AlGaN/GaN heterojunction, which simultaneously increases the electron density in the channel, resulting in a dramatic increase of the drain current owing to the conductivity modulation. The fabricated GIT exhibits a threshold voltage of 1.0 V with a maximum drain current of 200 mA/mm, in which a forward gate voltage of up to 6 V can be applied. The obtained specific ON-state resistance (RON . A) and the OFF-state breakdown voltage (BV ds) are 2.6 mOmega . cm2 and 800 V, respectively. The developed GIT is advantageous for power switching applications.

855 citations

Journal ArticleDOI
TL;DR: In this article, a gate injection transistor (GIT) is proposed to increase the drain current with low on-state resistance by conductivity modulation, which greatly helps in increasing the efficiency of power switching systems.
Abstract: This paper reviews the recent activities for normally-off GaN-based gate injection transistors (GITs) on Si substrates and their application to inverters. Epitaxial growth of the AlGaN/GaN heterostructures with good crystallinity over 200-mm Si substrates with eliminated bowing enables low-cost fabrication of GaN devices with high breakdown voltages. A novel normally-off GaN transistor called as GIT is proposed in which hole injection from the p-type AlGaN gate increases the drain current with low on-state resistance by conductivity modulation. The low on-state resistance in GaN-based devices greatly helps to increase the efficiency of power switching systems. A GaN-based three-phase inverter successfully drives a motor with high efficiency of 99.3% at a high output power of 1500 W. The presented GaN-based devices are expected to greatly help saving energy in the future as an indispensable power switching system.

329 citations

Patent
11 May 2011
TL;DR: In this article, a nitride semiconductor device is defined as: a first semiconductor layer made of first nitride, a second semiconductor, made of second nitride having a bandgap wider than that of the first, a control layer selectively formed on, or above, an upper portion of the second, and a third semiconductor having a p-type conductivity.
Abstract: A nitride semiconductor device includes: a first semiconductor layer made of first nitride semiconductor; a second semiconductor layer formed on a principal surface of the first semiconductor layer and made of second nitride semiconductor having a bandgap wider than that of the first nitride semiconductor; a control layer selectively formed on, or above, an upper portion of the second semiconductor layer and made of third nitride semiconductor having a p-type conductivity; source and drain electrodes formed on the second semiconductor layer at respective sides of the control layer; a gate electrode formed on the control layer; and a fourth semiconductor layer formed on a surface of the first semiconductor layer opposite to the principal surface, having a potential barrier in a valence band with respect to the first nitride semiconductor and made of fourth nitride semiconductor containing aluminum.

224 citations

Proceedings ArticleDOI
06 Mar 2011
TL;DR: In this paper, a successful operation of Gallium Nitride (GaN)-based three-phase inverter with high efficiency of 99.3% for driving motor at 900W under the carrier frequency of 6kHz was presented.
Abstract: In this paper, we present a successful operation of Gallium Nitride(GaN)-based three-phase inverter with high efficiency of 99.3% for driving motor at 900W under the carrier frequency of 6kHz. This efficiency well exceeds the value by IGBT (Insulated Gate Bipolar Transistor). This demonstrates that GaN has a great potential for power switching application competing with SiC. Fully reduced on-state resistance in a new normally-off GaN transistor called Gate Injection Transistor (GIT) greatly helps to increase the efficiency. In addition, use of the bidirectional operation of the lateral and compact GITs with synchronous gate driving, the inverter is operated free from fly-wheel diodes which have been connected in parallel with IGBTs in a conventional inverter system.

149 citations

Patent
Yasuhiro Uemoto1, Masahiro Hikita1, Tetsuzo Ueda1, Tsuyoshi Tanaka1, Daisuke Ueda1 
01 Mar 2007
TL;DR: In this paper, the authors proposed a control region having p-type conductivity and a region of the third nitride semiconductor layer located between the gate electrode and each of the source electrode and the drain electrode is formed with a high resistive region having a higher resistance than the control region.
Abstract: A nitride semiconductor device includes: a first nitride semiconductor layer; a second nitride semiconductor layer formed on the first nitride semiconductor layer and having a wider band gap than the first nitride semiconductor layer; and a third nitride semiconductor layer formed on the second nitride semiconductor layer. A region of the third nitride semiconductor layer located below the gate electrode is formed with a control region having a p-type conductivity, and a region of the third nitride semiconductor layer located between the gate electrode and each of the source electrode and the drain electrode is formed with a high resistive region having a higher resistance than the that of the control region.

132 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation is presented.
Abstract: Wide bandgap semiconductors show superior material properties enabling potential power device operation at higher temperatures, voltages, and switching speeds than current Si technology. As a result, a new generation of power devices is being developed for power converter applications in which traditional Si power devices show limited operation. The use of these new power semiconductor devices will allow both an important improvement in the performance of existing power converters and the development of new power converters, accounting for an increase in the efficiency of the electric energy transformations and a more rational use of the electric energy. At present, SiC and GaN are the more promising semiconductor materials for these new power devices as a consequence of their outstanding properties, commercial availability of starting material, and maturity of their technological processes. This paper presents a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation.

1,648 citations

Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: Several device technologies for realizing normally off operation that is highly desirable for power switching applications are presented and the examples of circuit applications that can greatly benefit from the superior performance of GaN power devices are demonstrated.
Abstract: In this paper, we present a comprehensive reviewand discussion of the state-of-the-art device technology and application development of GaN-on-Si power electronics. Several device technologies for realizing normally off operation that is highly desirable for power switching applications are presented. In addition, the examples of circuit applications that can greatly benefit from the superior performance of GaN power devices are demonstrated. Comparisonwith other competingpower device technology, such as Si superjunction-MOSFET and SiC MOSFET, is also presented and analyzed. Critical issues for commercialization of GaN-on-Si power devices are discussed with regard to cost, reliability, and ease of use.

922 citations