scispace - formally typeset
Search or ask a question
Author

Dal Ho Kim

Bio: Dal Ho Kim is an academic researcher from Kyungpook National University. The author has contributed to research in topics: Prior probability & Bayesian probability. The author has an hindex of 11, co-authored 134 publications receiving 587 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors developed a general methodology for small domain estimation based on data from repeated surveys and applied it to the estimation of median income of four-person families for the 50 states and the District of Columbia.
Abstract: This article develops a general methodology for small domain estimation based on data from repeated surveys. The results are directly applied to the estimation of median income of four-person families for the 50 states and the District of Columbia. These estimates are needed by the U.S. Department of Health and Human Services (HHS) to formulate its energy assistance program for low income families. The U.S. Bureau of the Census, by an informal agreement, has provided such estimates to HHS through a linear regression methodology since the latter part of the 1970s. The current method is an empirical Bayes method (EB) that uses the Current Population Survey (CPS) estimates as well as the most recent decennial census estimates updated by the per capita income estimates of the Bureau of Economic Analysis. However, with the existing methodology, standard errors associated with these estimates are not easy to obtain. The EB estimates, when used naively, can lead to underestimation of standard errors. Mo...

83 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical Bayes generalized linear model approach is taken which connects the local areas, thereby enabling one to "borrow strength" to estimate cancer incidence rates for local areas.

68 citations

Journal ArticleDOI
TL;DR: In this article, a model-based approach is taken, where the covariates in the superpopulation model are subject to measurement errors, and the asymptotic optimality of EB estimators is proved.
Abstract: . This paper considers simultaneous estimation of means from several strata. A model-based approach is taken, where the covariates in the superpopulation model are subject to measurement errors. Empirical Bayes (EB) and Hierarchical Bayes estimators of the strata means are developed and asymptotic optimality of EB estimators is proved. Their performances are examined and compared with that of the sample mean in a simulation study as well as in data analysis.

49 citations

Journal ArticleDOI
TL;DR: In Korea, the use of SYSADOA or CS in knee OA patients was relatively high and further studies on the effectiveness and the safety of these treatment options are needed.
Abstract: Background/Aims To evaluate the treatment patterns of knee osteoarthritis (OA) patients in South Korea.

29 citations

Journal ArticleDOI
TL;DR: Centers with higher case volume had better outcomes after living donor liver transplantation, including in-hospital mortality and long-term mortality compared with centers with lower case volume (⩽50 liver transplantations/year).
Abstract: Background.The relationship between institutional case volume and clinical outcomes after living donor liver transplantation is not clarified.Methods.We conducted a nationwide retrospective cohort study using the database of Korean National Healthcare Insurance Service. Between January 2007 and Dece

28 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Book
15 Jul 2004
TL;DR: In this paper, the authors present a method for estimating risk and risk of cancer in public health data using statistical methods for spatial data in the context of geographic information systems (GISs).
Abstract: Preface.Acknowledgments.1 Introduction.1.1 Why Spatial Data in Public Health?1.2 Why Statistical Methods for Spatial Data?1.3 Intersection of Three Fields of Study.1.4 Organization of the Book.2 Analyzing Public Health Data.2.1 Observational vs. Experimental Data.2.2 Risk and Rates.2.2.1 Incidence and Prevalence.2.2.2 Risk.2.2.3 Estimating Risk: Rates and Proportions.2.2.4 Relative and Attributable Risks.2.3 Making Rates Comparable: Standardized Rates.2.3.1 Direct Standardization.2.3.2 Indirect Standardization.2.3.3 Direct or Indirect?2.3.4 Standardizing to What Standard?2.3.5 Cautions with Standardized Rates.2.4 Basic Epidemiological Study Designs.2.4.1 Prospective Cohort Studies.2.4.2 Retrospective Case-Control Studies.2.4.3 Other Types of Epidemiological Studies.2.5 Basic Analytic Tool: The Odds Ratio.2.6 Modeling Counts and Rates.2.6.1 Generalized Linear Models.2.6.2 Logistic Regression.2.6.3 Poisson Regression.2.7 Challenges in the Analysis of Observational Data.2.7.1 Bias.2.7.2 Confounding.2.7.3 Effect Modification.2.7.4 Ecological Inference and the Ecological Fallacy.2.8 Additional Topics and Further Reading.2.9 Exercises.3 Spatial Data.3.1 Components of Spatial Data.3.2 An Odyssey into Geodesy.3.2.1 Measuring Location: Geographical Coordinates.3.2.2 Flattening the Globe: Map Projections and Coordinate Systems.3.2.3 Mathematics of Location: Vector and Polygon Geometry.3.3 Sources of Spatial Data.3.3.1 Health Data.3.3.2 Census-Related Data.3.3.3 Geocoding.3.3.4 Digital Cartographic Data.3.3.5 Environmental and Natural Resource Data.3.3.6 Remotely Sensed Data.3.3.7 Digitizing.3.3.8 Collect Your Own!3.4 Geographic Information Systems.3.4.1 Vector and Raster GISs.3.4.2 Basic GIS Operations.3.4.3 Spatial Analysis within GIS.3.5 Problems with Spatial Data and GIS.3.5.1 Inaccurate and Incomplete Databases.3.5.2 Confidentiality.3.5.3 Use of ZIP Codes.3.5.4 Geocoding Issues.3.5.5 Location Uncertainty.4 Visualizing Spatial Data.4.1 Cartography: The Art and Science of Mapmaking.4.2 Types of Statistical Maps.MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9.4.2.1 Maps for Point Features.4.2.2 Maps for Areal Features.4.3 Symbolization.4.3.1 Map Generalization.4.3.2 Visual Variables.4.3.3 Color.4.4 Mapping Smoothed Rates and Probabilities.4.4.1 Locally Weighted Averages.4.4.2 Nonparametric Regression.4.4.3 Empirical Bayes Smoothing.4.4.4 Probability Mapping.4.4.5 Practical Notes and Recommendations.CASE STUDY: Smoothing New York Leukemia Data.4.5 Modifiable Areal Unit Problem.4.6 Additional Topics and Further Reading.4.6.1 Visualization.4.6.2 Additional Types of Maps.4.6.3 Exploratory Spatial Data Analysis.4.6.4 Other Smoothing Approaches.4.6.5 Edge Effects.4.7 Exercises.5 Analysis of Spatial Point Patterns.5.1 Types of Patterns.5.2 Spatial Point Processes.5.2.1 Stationarity and Isotropy.5.2.2 Spatial Poisson Processes and CSR.5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods.5.2.4 Heterogeneous Poisson Processes.5.2.5 Estimating Intensity Functions.DATA BREAK: Early Medieval Grave Sites.5.3 K Function.5.3.1 Estimating the K Function.5.3.2 Diagnostic Plots Based on the K Function.5.3.3 Monte Carlo Assessments of CSR Based on the K Function.DATA BREAK: Early Medieval Grave Sites.5.3.4 Roles of First- and Second-Order Properties.5.4 Other Spatial Point Processes.5.4.1 Poisson Cluster Processes.5.4.2 Contagion/Inhibition Processes.5.4.3 Cox Processes.5.4.4 Distinguishing Processes.5.5 Additional Topics and Further Reading.5.6 Exercises.6 Spatial Clusters of Health Events: Point Data for Cases and Controls.6.1 What Do We Have? Data Types and Related Issues.6.2 What Do We Want? Null and Alternative Hypotheses.6.3 Categorization of Methods.6.4 Comparing Point Process Summaries.6.4.1 Goals.6.4.2 Assumptions and Typical Output.6.4.3 Method: Ratio of Kernel Intensity Estimates.DATA BREAK: Early Medieval Grave Sites.6.4.4 Method: Difference between K Functions.DATA BREAK: Early Medieval Grave Sites.6.5 Scanning Local Rates.6.5.1 Goals.6.5.2 Assumptions and Typical Output.6.5.3 Method: Geographical Analysis Machine.6.5.4 Method: Overlapping Local Case Proportions.DATA BREAK: Early Medieval Grave Sites.6.5.5 Method: Spatial Scan Statistics.DATA BREAK: Early Medieval Grave Sites.6.6 Nearest-Neighbor Statistics.6.6.1 Goals.6.6.2 Assumptions and Typical Output.6.6.3 Method: q Nearest Neighbors of Cases.CASE STUDY: San Diego Asthma.6.7 Further Reading.6.8 Exercises.7 Spatial Clustering of Health Events: Regional Count Data.7.1 What Do We Have and What Do We Want?7.1.1 Data Structure.7.1.2 Null Hypotheses.7.1.3 Alternative Hypotheses.7.2 Categorization of Methods.7.3 Scanning Local Rates.7.3.1 Goals.7.3.2 Assumptions.7.3.3 Method: Overlapping Local Rates.DATA BREAK: New York Leukemia Data.7.3.4 Method: Turnbull et al.'s CEPP.7.3.5 Method: Besag and Newell Approach.7.3.6 Method: Spatial Scan Statistics.7.4 Global Indexes of Spatial Autocorrelation.7.4.1 Goals.7.4.2 Assumptions and Typical Output.7.4.3 Method: Moran's I .7.4.4 Method: Geary's c.7.5 Local Indicators of Spatial Association.7.5.1 Goals.7.5.2 Assumptions and Typical Output.7.5.3 Method: Local Moran's I.7.6 Goodness-of-Fit Statistics.7.6.1 Goals.7.6.2 Assumptions and Typical Output.7.6.3 Method: Pearson's chi2.7.6.4 Method: Tango's Index.7.6.5 Method: Focused Score Tests of Trend.7.7 Statistical Power and Related Considerations.7.7.1 Power Depends on the Alternative Hypothesis.7.7.2 Power Depends on the Data Structure.7.7.3 Theoretical Assessment of Power.7.7.4 Monte Carlo Assessment of Power.7.7.5 Benchmark Data and Conditional Power Assessments.7.8 Additional Topics and Further Reading.7.8.1 Related Research Regarding Indexes of Spatial Association.7.8.2 Additional Approaches for Detecting Clusters and/or Clustering.7.8.3 Space-Time Clustering and Disease Surveillance.7.9 Exercises.8 Spatial Exposure Data.8.1 Random Fields and Stationarity.8.2 Semivariograms.8.2.1 Relationship to Covariance Function and Correlogram.8.2.2 Parametric Isotropic Semivariogram Models.8.2.3 Estimating the Semivariogram.DATA BREAK: Smoky Mountain pH Data.8.2.4 Fitting Semivariogram Models.8.2.5 Anisotropic Semivariogram Modeling.8.3 Interpolation and Spatial Prediction.8.3.1 Inverse-Distance Interpolation.8.3.2 Kriging.CASE STUDY: Hazardous Waste Site Remediation.8.4 Additional Topics and Further Reading.8.4.1 Erratic Experimental Semivariograms.8.4.2 Sampling Distribution of the Classical Semivariogram Estimator.8.4.3 Nonparametric Semivariogram Models.8.4.4 Kriging Non-Gaussian Data.8.4.5 Geostatistical Simulation.8.4.6 Use of Non-Euclidean Distances in Geostatistics.8.4.7 Spatial Sampling and Network Design.8.5 Exercises.9 Linking Spatial Exposure Data to Health Events.9.1 Linear Regression Models for Independent Data.9.1.1 Estimation and Inference.9.1.2 Interpretation and Use with Spatial Data.DATA BREAK: Raccoon Rabies in Connecticut.9.2 Linear Regression Models for Spatially Autocorrelated Data.9.2.1 Estimation and Inference.9.2.2 Interpretation and Use with Spatial Data.9.2.3 Predicting New Observations: Universal Kriging.DATA BREAK: New York Leukemia Data.9.3 Spatial Autoregressive Models.9.3.1 Simultaneous Autoregressive Models.9.3.2 Conditional Autoregressive Models.9.3.3 Concluding Remarks on Conditional Autoregressions.9.3.4 Concluding Remarks on Spatial Autoregressions.9.4 Generalized Linear Models.9.4.1 Fixed Effects and the Marginal Specification.9.4.2 Mixed Models and Conditional Specification.9.4.3 Estimation in Spatial GLMs and GLMMs.DATA BREAK: Modeling Lip Cancer Morbidity in Scotland.9.4.4 Additional Considerations in Spatial GLMs.CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9.9.5 Bayesian Models for Disease Mapping.9.5.1 Hierarchical Structure.9.5.2 Estimation and Inference.9.5.3 Interpretation and Use with Spatial Data.9.6 Parting Thoughts.9.7 Additional Topics and Further Reading.9.7.1 General References.9.7.2 Restricted Maximum Likelihood Estimation.9.7.3 Residual Analysis with Spatially Correlated Error Terms.9.7.4 Two-Parameter Autoregressive Models.9.7.5 Non-Gaussian Spatial Autoregressive Models.9.7.6 Classical/Bayesian GLMMs.9.7.7 Prediction with GLMs.9.7.8 Bayesian Hierarchical Models for Spatial Data.9.8 Exercises.References.Author Index.Subject Index.

1,134 citations

Journal ArticleDOI
TL;DR: The updated ESCEO stepwise algorithm, developed by consensus from clinical experts in OA and informed by available evidence for the benefits and harms of various treatments, provides practical, current guidance that will enable clinicians to deliver patient-centric care in Oa practice.

312 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a critical review of the main advances in small area estimation (SAE) methods in recent years and discuss some of the earlier developments, which serve as a necessary background for the new studies.
Abstract: Summary The purpose of this paper is to provide a critical review of the main advances in small area estimation (SAE) methods in recent years. We also discuss some of the earlier developments, which serve as a necessary background for the new studies. The review focuses on model dependent methods with special emphasis on point prediction of the target area quantities, and mean square error assessments. The new models considered are models used for discrete measurements, time series models and models that arise under informative sampling. The possible gains from modeling the correlations among small area random effects used to represent the unexplained variation of the small area target quantities are examined. For review and appraisal of the earlier methods used for SAE, see Ghosh and Rao (1994).

256 citations