scispace - formally typeset
Search or ask a question
Author

Dale L. Ludwig

Bio: Dale L. Ludwig is an academic researcher from Eli Lilly and Company. The author has contributed to research in topics: Cancer & Antibody. The author has an hindex of 37, co-authored 101 publications receiving 7400 citations. Previous affiliations of Dale L. Ludwig include Los Alamos National Laboratory & Memorial Sloan Kettering Cancer Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that feedback down-regulation of receptor tyrosine kinase signaling is a frequent event in tumor cells with constitutive mTOR activation, and reversal of this feedback loop by rapamycin may attenuate its therapeutic effects, whereas combination therapy that ablates mTOR function and prevents Akt activation may have improved antitumor activity.
Abstract: Stimulation of the insulin and insulin-like growth factor I (IGF-I) receptor activates the phosphoinositide-3-kinase/Akt/mTOR pathway causing pleiotropic cellular effects including an mTOR-dependent loss in insulin receptor substrate-1 expression leading to feedback down-regulation of signaling through the pathway. In model systems, tumors exhibiting mutational activation of phosphoinositide-3-kinase/Akt kinase, a common event in cancers, are hypersensitive to mTOR inhibitors, including rapamycin. Despite the activity in model systems, in patients, mTOR inhibitors exhibit more modest antitumor activity. We now show that mTOR inhibition induces insulin receptor substrate-1 expression and abrogates feedback inhibition of the pathway, resulting in Akt activation both in cancer cell lines and in patient tumors treated with the rapamycin derivative, RAD001. IGF-I receptor inhibition prevents rapamycin-induced Akt activation and sensitizes tumor cells to inhibition of mTOR. In contrast, IGF-I reverses the antiproliferative effects of rapamycin in serum-free medium. The data suggest that feedback down-regulation of receptor tyrosine kinase signaling is a frequent event in tumor cells with constitutive mTOR activation. Reversal of this feedback loop by rapamycin may attenuate its therapeutic effects, whereas combination therapy that ablates mTOR function and prevents Akt activation may have improved antitumor activity.

2,423 citations

Journal Article
TL;DR: Results demonstrate that A12 possesses strong antitumor activity in vitro and in vivo and may therefore be an effective therapeutic candidate for the treatment of cancers that are dependent on IGF-IR signaling for growth and survival.
Abstract: The insulin-like growth factor I receptor (IGF-IR) is overexpressed in many diverse tumor types and is a critical signaling molecule for tumor cell proliferation and survival. Therapeutic strategies targeting the IGF-IR may therefore be effective broad-spectrum anticancer agents. Through screening of a Fab phage display library, we have generated a fully human antibody (A12) that binds to the IGF-IR with high affinity (4.11 x 10(-11) M) and inhibits ligand binding with an IC(50) of 0.6-1 nM. Antibody-mediated blockade of ligand binding to the IGF-IR inhibited downstream signaling of the two major insulin-like growth factor (IGF) pathways, mitogen-activated protein kinase and phosphatidylinositol 3'-kinase/Akt, in MCF7 human breast cancer cells. As a result, the mitogenic and proliferative potential of IGF-I and IGF-II were significantly reduced. A12 did not block insulin binding to the insulin receptor but could block binding to atypical IGF-IR in MCF7 cells. In addition, A12 was shown to induce IGF-IR internalization and degradation on specific binding to tumor cells, resulting in a significant reduction in cell surface receptor density. In xenograft tumor models in vivo, IGF-IR blockade by A12 was shown to occur rapidly, resulting in significant growth inhibition of breast, renal, and pancreatic tumors. Histological analysis of tumor sections demonstrated a marked increase in apoptotic tumor cells in antibody-treated animals. These results demonstrate that A12 possesses strong antitumor activity in vitro and in vivo and may therefore be an effective therapeutic candidate for the treatment of cancers that are dependent on IGF-IR signaling for growth and survival.

408 citations

Journal ArticleDOI
TL;DR: A recombinant human IgG-like bispecific antibody, a Di-diabody, produced using the variable regions from two antagonistic antibodies that binds to both EGFR and IGFR and effectively blocked both EGF- and IGF-stimulated receptor activation and tumor cell proliferation.

297 citations

Journal ArticleDOI
TL;DR: The direct physical interaction of PCNA with xeroderma pigmentosum (XP) G, a structure-specific repair endonuclease that is homologous to FEN-1, raises the possibility of a mechanistic linkage between excision and repair synthesis that is mediated by PCNA.

239 citations

Journal ArticleDOI
TL;DR: It is suggested that direct physical interactions between RAD52 and RPA are essential for homologous recombination in mammalian cells.

232 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations

Journal ArticleDOI
TL;DR: Adding cetuximab to platinum-based chemotherapy with fluorouracil (platinum-fluorouracils) significantly prolonged the median overall survival and improved overall survival when given as first-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck.
Abstract: Background Cetuximab is effective in platinum-resistant recurrent or metastatic squamous-cell carcinoma of the head and neck. We investigated the efficacy of cetuximab plus platinum-based chemotherapy as first-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck. Methods We randomly assigned 220 of 442 eligible patients with untreated recurrent or metastatic squamous-cell carcinoma of the head and neck to receive cisplatin (at a dose of 100 mg per square meter of body-surface area on day 1) or carboplatin (at an area under the curve of 5 mg per milliliter per minute, as a 1-hour intravenous infusion on day 1) plus fluorouracil (at a dose of 1000 mg per square meter per day for 4 days) every 3 weeks for a maximum of 6 cycles and 222 patients to receive the same chemotherapy plus cetuximab (at a dose of 400 mg per square meter initially, as a 2-hour intravenous infusion, then 250 mg per square meter, as a 1-hour intravenous infusion per week) for a maximum of 6 cycles. Patients with stable disease who received chemotherapy plus cetuximab continued to receive cetuximab until disease progression or unacceptable toxic effects, whichever occurred first. Results

2,940 citations

Journal ArticleDOI
TL;DR: In light of the recent advances in understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, the exciting therapeutic opportunities for targeting this pathway to treat these diseases are discussed.
Abstract: Phosphatidylinositol 3-kinases (PI3Ks) evolved from a single enzyme that regulates vesicle trafficking in unicellular eukaryotes into a family of enzymes that regulate cellular metabolism and growth in multicellular organisms. In this review, we examine how the PI3K pathway has evolved to control these fundamental processes, and how this pathway is in turn regulated by intricate feedback and crosstalk mechanisms. In light of the recent advances in our understanding of the function of PI3Ks in the pathogenesis of diabetes and cancer, we discuss the exciting therapeutic opportunities for targeting this pathway to treat these diseases.

2,935 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations