scispace - formally typeset
Search or ask a question
Author

Daling Lu

Bio: Daling Lu is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Photocatalysis & Water splitting. The author has an hindex of 34, co-authored 79 publications receiving 6782 citations. Previous affiliations of Daling Lu include Max Planck Society & Shinshu University.


Papers
More filters
Journal ArticleDOI
16 Mar 2006-Nature
TL;DR: An advance in the catalysis of the overall splitting of water under visible light is described: the new catalyst is a solid solution of gallium and zinc nitrogen oxide, modified with nanoparticles of a mixed oxide of rhodium and chromium, which functions as a promising and efficient photocatalyst in promoting the evolution of hydrogen gas.
Abstract: Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight.

2,537 citations

Journal ArticleDOI
TL;DR: Graphitic carbon nitride (g-C3N4) with a band gap of 2.7 eV is studied as a nonmetallic photocatalyst for H2 or O2 evolution from water under ultraviolet (UV) and visible light.
Abstract: Graphitic carbon nitride (g-C3N4) with a band gap of 2.7 eV is studied as a nonmetallic photocatalyst for H2 or O2 evolution from water under ultraviolet (UV) and visible light. The g-C3N4 catalyst exhibits activities for water reduction into H2 or water oxidation into O2 in the presence of a proper sacrificial electron donor or acceptor, respectively, even without the need for precious metal cocatalysts. When bis(1,5-cyclooctadiene)platinum complex [Pt(cod)2] (a nonionic complex) is used as a precursor of Pt cocatalyst instead of H2PtCl6 (an ionic complex), enhanced H2 evolution activity is acquired. This difference in activity is primarily due to the better dispersion of Pt nanoparticles on g-C3N4, which is considered to originate from the better access of Pt(cod)2 to the g-C3N4 surface, as compared to that of H2PtCl6 in the preparation process. Unmodified g-C3N4 produces O2 from an aqueous silver nitrate solution upon UV irradiation (λ > 300 nm), although N2 release due to self-decomposition of g-C3N4 ...

673 citations

Journal ArticleDOI
TL;DR: Photoluminescence and photoelectrochemical measurements indicated that the high activity of this Z-scheme system results from the moderated n-type semiconducting character of ZrO(2)/TaON, which results in a lower probability of undesirable electron-hole recombination in Zr O(2/TaON than in TaON.
Abstract: A two-step photocatalytic water splitting (Z-scheme) system consisting of a modified ZrO2/TaON species (H2 evolution photocatalyst), an O2 evolution photocatalyst, and a reversible donor/acceptor pair (i.e., redox mediator) was investigated. Among the O2 evolution photocatalysts and redox mediators examined, Pt-loaded WO3 (Pt/WO3) and the IO3−/I− pair were respectively found to be the most active components. Combining these two components with Pt-loaded ZrO2/TaON achieved stoichiometric water splitting into H2 and O2 under visible light, achieving an apparent quantum yield of 6.3% under irradiation by 420.5 nm monochromatic light under optimal conditions, 6 times greater than the yield achieved using a TaON analogue. To the best of our knowledge, this is the highest reported value to date for a nonsacrificial visible-light-driven water splitting system. The high activity of this system is due to the efficient reaction of electron donors (I− ions) and acceptors (IO3− ions) on the Pt/ZrO2/TaON and Pt/WO3 ph...

626 citations

Journal ArticleDOI
TL;DR: Herein, a proof-of-concept is shown using GaN:ZnO loaded with Rh/Cr2O3 (core/shell) and Mn3O4 NPs as H2 and O2 evolution promoters, respectively, under irradiation with visible light (l> 420 nm).
Abstract: Overall water splitting using a particulate photocatalyst and solar energy has attracted significant attention as a potential means of large-scale H2 production from renewable resources without carbon dioxide emission. 2] The reaction occurs in three steps: 1) the photocatalyst absorbs photon energy greater than the band-gap energy of the material and generates photoexcited electron–hole pairs in the bulk, 2) the photoexcited carriers separate and migrate to the surface without recombination, and 3) adsorbed species are reduced and oxidized by the photogenerated electrons and holes to produce H2 and O2, respectively. The first two steps are strongly dependent on the structural and electronic properties of the photocatalyst, while the third step is promoted by an additional catalyst (called cocatalyst). Therefore, it is important to develop a photocatalyst and a cocatalyst in harmony. Recently, our group has focused on active sites for H2 evolution on the surface of a photocatalyst, because most photocatalysts lack surface H2 evolution sites. [2b] Using a solid solution of GaN and ZnO (abbreviated GaN:ZnO hereafter) that can harvest visible photons up to ca. 500 nm, chromium-containing transition-metal oxides or noble-metal/ chromia (core/shell) nanoparticles (NPs) have been shown to function as H2 evolution cocatalysts, resulting in efficient water splitting under visible light. Meanwhile, also several sulfides were proposed as efficient catalysts for H2 evolution, and the role of H2 evolution cocatalysts has been explored by spectroscopic and electrochemical techniques. It would be natural to expect that loading both H2 and O2 evolution cocatalysts onto the same photocatalyst would improve water-splitting activity, compared to photocatalysts modified with either an H2 or O2 evolution cocatalyst. [8] It is easy to imagine how these two different cocatalysts would separately facilitate H2 and O2 evolution, thereby promoting overall water splitting in harmony. Unfortunately, no successful and reliable example of this has been reported since the initial reports on photocatalytic water splitting in the 1980s. The actual demonstration of the concept remains a major challenge. Herein, we show a proof-of-concept using GaN:ZnO loaded with Rh/Cr2O3 (core/shell) and Mn3O4 NPs as H2 and O2 evolution promoters, respectively, under irradiation with visible light (l> 420 nm). First, Mn oxide was introduced onto GaN:ZnO, prepared by our previous method, as O2 evolution cocatalyst. Some Mn oxides have been reported to act as O2 evolution promoters, and it is well known that a Mn complex is the O2 evolution center in the photosynthesis of green plants. MnO NPs with a mean size of (9.2 0.4) nm (Figure S1 in the Supporting Information) were adsorbed onto GaN:ZnO. It was revealed by UV/vis spectroscopy that the introduced MnO NPs (ca. 1.0 wt %) were almost quantitatively anchored on the GaN:ZnO surface, based on the change in the absorption band of the MnO NPs (Figure S2 in the Supporting Information). The as-prepared MnO/GaN:ZnO sample was then calcined in air at 673 K for 3 h to remove organic residues. Separate experiments with thermogravimetry, differential thermal analysis (TG-DTA), and X-ray diffraction (XRD) showed that the organic ligands stabilizing the MnO NPs were completely burned off by calcination in air at 673 K, and that calcination of dried MnO NP powder under the above conditions resulted in phase transformation of the MnO into Mn3O4 (Figure S3 in the Supporting Information). Transmission electron microscopy (TEM) observation revealed that the particle size of the Mn oxide was maintained, even after calcination (Figure S1 in the Supporting Information). Thus, GaN:ZnO particles were successfully decorated with Mn3O4 NPs which were expected to act as water oxidation cocatalysts. Because GaN:ZnO is an n-type semiconductor, it is possible to monitor the photooxidation reaction occurring on its surface using an electrochemical technique. Under [*] Dr. K. Maeda, A. Xiong, N. Sakamoto, Dr. T. Hisatomi, Prof. Dr. K. Domen Department of Chemical System Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan) Fax: (+ 81)3-5841-8838 E-mail: domen@chemsys.t.u-tokyo.ac.jp Homepage: http://www.domen.t.u-tokyo.ac.jp/

387 citations

Journal ArticleDOI
TL;DR: Mesoporous Ta2O5 was synthesized by the ligand-assisted templating method, and its stability for use as a photocatalyst was studied by X-ray diffraction, N2 adsorption isotherm analysis, and transmission electron microscopy as discussed by the authors.
Abstract: Mesoporous Ta2O5 was synthesized by the ligand-assisted templating method, and its stability for use as a photocatalyst was studied by X-ray diffraction, N2 adsorption isotherm analysis, and transmission electron microscopy. The photocatalytic activity for the overall water decomposition on the mesoporous Ta2O5 was improved by NiO loading and pretreatment. The mesoporous structure was found to be maintained to some extent after loading of NiO (H2 evolution site) and pretreatment for activation at a temperature as high as 673 K. Although the wall of mesoporous Ta2O5 was amorphous, the photocatalytic activity was higher than that of the crystallized Ta2O5.

218 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

9,751 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations

Journal ArticleDOI
TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Abstract: Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2

8,037 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations