scispace - formally typeset
Search or ask a question
Author

Dalma Novak

Other affiliations: Cooperative Research Centre, ULTra
Bio: Dalma Novak is an academic researcher from University of Melbourne. The author has contributed to research in topics: Wavelength-division multiplexing & Semiconductor laser theory. The author has an hindex of 37, co-authored 198 publications receiving 5332 citations. Previous affiliations of Dalma Novak include Cooperative Research Centre & ULTra.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of fiber chromatic dispersion in fiber-wireless systems incorporating external modulators were investigated and the achievable link distance can be increased by varying the chirp parameter of the modulator to give large negative chirps using a dual-electrode Mach-Zehnder modulator biased at quadrature.
Abstract: We demonstrate two techniques to reduce the effects of fiber chromatic dispersion in fiber-wireless systems incorporating external modulators. We theoretically and experimentally show that the achievable link distance can be increased by varying the chirp parameter of the modulator to give large negative chirp using a dual-electrode Mach-Zehnder modulator (MZM) biased at quadrature. In addition, we show that dispersion can be almost totally overcome by implementing a simple method using the dual-electrode MZM to generate an optical carrier with single sideband (SSB) modulation. We demonstrate the transmission of a 51.8-Mb/s pseudorandom bit sequence (PRBS) at 12 GHz over 80 km of standard single-mode fiber using the SSB generator and measure a bit-error-rate (BER) power penalty due to fiber dispersion of less than 0.5 dB for a BER equal to 10/sup -9/.

748 citations

Journal ArticleDOI
TL;DR: An overview of different techniques to optically transport mm-wave wireless signals and to overcome impairments associated with the transport of the wireless signals is presented and the different designs of subsystems for integrating fiber-wireless technology onto existing optical infrastructure are reviewed.
Abstract: Hybrid fiber-wireless networks incorporating WDM technology for fixed wireless access operating in the sub-millimeter-wave and millimeter-wave (mm-wave) frequency regions are being actively pursued to provide untethered connectivity for ultrahigh bandwidth communications. The architecture of such radio networks requires a large number of antenna base-stations with high throughput to be deployed to maximize the geographical coverage with the main switching and routing functionalities located in a centralized location. The transportation of mm-wave wireless signals within the hybrid network is subject to several impairments including low opto-electronic conversion efficiency, fiber chromatic dispersion and also degradation due to nonlinearities along the link. One of the major technical challenges in implementing such networks lies in the mitigation of these various optical impairments that the wireless signals experience within the hybrid network. In this paper, we present an overview of different techniques to optically transport mm-wave wireless signals and to overcome impairments associated with the transport of the wireless signals. We also review the different designs of subsystems for integrating fiber-wireless technology onto existing optical infrastructure.

510 citations

Journal ArticleDOI
TL;DR: In this article, a method for generating an optical carrier with single sideband modulation using a dual-electrode Mach-Zehnder modulator biased at quadrature is presented.
Abstract: The authors present a novel method for generating an optical carrier with single sideband modulation using a dual-electrode Mach-Zehnder modulator biased at quadrature. It is proposed and demonstrated experimentally that this simple technique can be used to reduce dispersion power penalties in fibre-radio systems.

464 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the optimum carrier-to-sideband ratio (CSR) for maximizing the transmission performance of an optically modulated millimeter-wave signal in a fiber-wireless system via experiment, theory, and simulation.
Abstract: In this paper, we investigate the optimum carrier-to-sideband ratio (CSR) for maximizing the transmission performance of an optically modulated millimeter-wave signal in a fiber-wireless system via experiment, theory, and simulation. We present a simple analytical model to assess the performance enhancement resulting from optical CSR variations. The model is capable of analyzing systems incorporating binary phase-shift keyed and quaternary phase-shift keyed modulation formats. We quantify the optical CSR of a point-to-point fiber-radio link and establish that the performance of the fiber-wireless links can be significantly improved when the optical signal is transmitted at the optimum CSR of 0 dB. The analysis further shows that the optimum optical CSR is independent of transmission bit rates.

186 citations

Journal ArticleDOI
TL;DR: A review of recent developments in radio-over-fiber technologies that can support the distribution of broadband wireless signals in a converged optical/wireless network and the challenges for the successful application in future wireless systems, such as 5G and 60-GHz networks are presented.
Abstract: Radio-over-fiber transmission has extensively been studied as a means to realizing a fiber optic wireless distribution network that enables seamless integration of the optical and wireless network infrastructures. Emerging wireless communication networks that support new broadband services provide increased opportunities for photonics technologies to play a prominent role in the realization of the next generation integrated optical/wireless networks. In this paper, we present a review of recent developments in radio-over-fiber technologies that can support the distribution of broadband wireless signals in a converged optical/wireless network. We also describe some of the challenges for the successful application of radio-over-fiber technologies in future wireless systems, such as 5G and 60-GHz networks.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Microwave photonics has attracted great interest from both the research community and the commercial sector over the past 30 years and is set to have a bright future as mentioned in this paper, which makes it possible to have functions in microwave systems that are complex or even not directly possible in the radiofrequency domain and also creates new opportunities for telecommunication networks.
Abstract: Microwave photonics, which brings together the worlds of radiofrequency engineering and optoelectronics, has attracted great interest from both the research community and the commercial sector over the past 30 years and is set to have a bright future. The technology makes it possible to have functions in microwave systems that are complex or even not directly possible in the radiofrequency domain and also creates new opportunities for telecommunication networks. Here we introduce the technology to the photonics community and summarize recent research and important applications.

2,354 citations

Proceedings Article
01 Aug 2012
TL;DR: In this article, the performance requirements for externally-modulated analog microwave photonic links are reviewed with specific emphasis placed on modulator efficiency, laser noise, detected photocurrent, and link linearity.
Abstract: An overview of analog microwave photonics will be presented. The performance requirements for externally-modulated analog microwave photonic links will be reviewed with specific emphasis placed on modulator efficiency, laser noise, detected photocurrent, and link linearity.

1,434 citations

Journal Article
TL;DR: In this paper, techniques developed in the last few years in microwave photonics are reviewed with an emphasis on the systems architectures for photonic generation and processing of microwave signals, photonic true-time delay beamforming, radio-over-fiber systems, and photonic analog-to-digital conversion.
Abstract: Broadband and low loss capability of photonics has led to an ever-increasing interest in its use for the generation, processing, control and distribution of microwave and millimeter-wave signals for applications such as broadband wireless access networks, sensor networks, radar, satellite communitarians, instrumentation and warfare systems. In this tutorial, techniques developed in the last few years in microwave photonics are reviewed with an emphasis on the systems architectures for photonic generation and processing of microwave signals, photonic true-time delay beamforming, radio-over-fiber systems, and photonic analog-to-digital conversion. Challenges in system implementation for practical applications and new areas of research in microwave photonics are also discussed.

1,332 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art technologies on photonics-based terahertz communications are compared with competing technologies based on electronics and free-space optical communications.
Abstract: This Review covers the state-of-the-art technologies on photonics-based terahertz communications, which are compared with competing technologies based on electronics and free-space optical communications. Future prospects and challenges are also discussed. Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.

1,238 citations

Journal ArticleDOI
TL;DR: The goal of this paper is to provide a comprehensive review of wireless sub-THz and THz communications and report on the reported advantages and challenges of using sub-terahertz andTHz waves as a means to transmit data wirelessly.
Abstract: According to Edholm’s law, the demand for point-to-point bandwidth in wireless short-range communications has doubled every 18 months over the last 25 years It can be predicted that data rates of around 5–10 Gb/s will be required in ten years In order to achieve 10 Gb/s data rates, the carrier frequencies need to be increased beyond 100 GHz Over the past ten years, several groups have considered the prospects of using sub-terahertz (THz) and THz waves (100–2000 GHz) as a means to transmit data wirelessly Some of the reported advantages of THz communications links are inherently higher bandwidth compared to millimeter wave links, less susceptibility to scintillation effects than infrared wireless links, and the ability to use THz links for secure communications Our goal of this paper is to provide a comprehensive review of wireless sub-THz and THz communications

991 citations