scispace - formally typeset
Search or ask a question
Author

Damiano Monticelli

Bio: Damiano Monticelli is an academic researcher from University of Insubria. The author has contributed to research in topics: Cathodic stripping voltammetry & Inductively coupled plasma mass spectrometry. The author has an hindex of 17, co-authored 79 publications receiving 805 citations. Previous affiliations of Damiano Monticelli include University of the Balearic Islands & University of Liverpool.


Papers
More filters
Journal ArticleDOI
TL;DR: This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials.

98 citations

Journal ArticleDOI
TL;DR: More recently, biochar, a porous carbonaceous material produced by direct (i.e., solvent free) pyrolysis of biomasses, was also investigated, leading to a further decrease in the fabrication environmental footprint as mentioned in this paper.

50 citations

Journal ArticleDOI
TL;DR: It is shown here that the addition of an acidification/alkalinization step is essential in order to cancel any organic complexation, and that an extra increment of the pH to 8.6-8.8 leads to the definition of a preconcentration-free procedure with the lowest detection limit described up to now.
Abstract: A new analytical protocol for the challenging analysis of total dissolved iron at the low picomolar level in oceanic waters suitable for onboard analysis is presented. The method is based on the revision of the adsorptive properties of the iron/2,3-dihydroxynaphthalene (Fe/DHN) complexes on the hanging mercury drop electrode with catalytic enhancement by bromate ions. Although it was based on a previously proposed reagent combination, we show here that the addition of an acidification/alkalinization step is essential in order to cancel any organic complexation, and that an extra increment of the pH to 8.6–8.8 leads to the definition of a preconcentration-free procedure with the lowest detection limit described up to now. For total dissolved iron analysis, samples were acidified to pH 2.0 in the presence of 30 μM DHN and left to equilibrate overnight. A 10 mL sample was subsequently buffered to a pH of ∼8.7 in the presence of 20 mM bromate: a 60 s deposition at 0 V led to a sensitivity of 34 nA nM–1 min–1,...

44 citations

Journal ArticleDOI
TL;DR: It was demonstrated that iron detection at the ultratrace level (0.1 nM) may be achieved in small samples with high sensitivity, no need for purging, no added oxidant, and a limit of detection of 5 pM.
Abstract: A new method based on adsorptive cathodic stripping voltammetry with catalytic enhancement for the determination of total dissolved iron in seawater is reported. It was demonstrated that iron detection at the ultratrace level (0.1 nM) may be achieved in small samples (500 μL) with high sensitivity, no need for purging, no added oxidant, and a limit of detection of 5 pM. The proposed method is based on the adsorption of the complex Fe/2,3-dihydroxynaphthalene (DHN) exploiting the catalytic effect of atmospheric oxygen. As opposite to the original method (Obata, H.; van den Berg, C. M. Anal. Chem. 2001, 73, 2522–2528), atmospheric oxygen dissolved in solution replaced bromate ions in the oxidation of the iron complex: removing bromate reduces the blank level and avoids the use of a carcinogenic species. Moreover, the new method is based on a recently introduced hardware that enables the determinations to be performed in 500 μL samples. The analyses were carried out on buffered samples (pH 8.15, HEPPS 0.01 M...

42 citations

Journal ArticleDOI
TL;DR: In this article, a generalist conceptual model useful for building hypotheses on the mechanisms at stake and directing future studies was elaborated and presented, highlighting methodological and technical challenges that can potentially affect cross-comparability of data and their relevance for environmental settings.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the geochemical properties of UHP terranes is presented, focusing on the following issues in continental subduction zones: the time and duration of uHP metamorphism, the origin and action of metamorphic fluid/melt inside UHP slices, the element and isotope mobilities under HP to UHP conditions during continental collision, the origins of premetamorphic protoliths and its bearing on continental collision types, and the crustal detachment and crust mantle interaction in subduction channels.

470 citations

Journal ArticleDOI
TL;DR: A combination of results from the fields of petrology, numerical modelling, geophysics and geochemistry suggests a two-step process. as mentioned in this paper suggests that intensely mixed metamorphic rock formations (melanges) form along the interface between the subducted slab and the mantle.
Abstract: At subduction zones, crustal material enters the mantle. Some of this material, however, is returned to the overriding plate through volcanic and plutonic activity. Magmas erupted above subduction zones show a characteristic range of compositions that reflect mixing in the magma source region between three components: hydrous fluids derived from the subducted oceanic crust, components of the thin veneer of subducted sediments and peridotite mantle rocks. The mechanism for mixing and transport of these components has been enigmatic. A combination of results from the fields of petrology, numerical modelling, geophysics and geochemistry suggests a two-step process. First, intensely mixed metamorphic rock formations—melanges—form along the interface between the subducted slab and the mantle. As the melange contains the characteristic three-component geochemical pattern of subduction-zone magmas, we suggest that melange formation provides the physical mixing process. Then, blobs of low-density melange material—diapirs—rise buoyantly from the surface of the subducting slab and transport the well-mixed melange material into the mantle beneath the volcanoes. Magma erupted at subduction-zone volcanoes contains mantle rocks and a mixture of fluids and sediments derived from the subducted slab. A synthesis of work over past years provides an integrated physico-chemical framework for subduction zones with mixing at the slab–mantle interface and transport towards the surface volcanoes by buoyant diapirs.

413 citations

Journal ArticleDOI
TL;DR: An overview of the 1,2,3-triazole ring as a bioisostere for the design of drug analogs, highlighting relevant recent examples.

392 citations

Journal ArticleDOI
TL;DR: This research presents a novel and scalable approaches called “Smart Gene Regulation” that allows for real-time annotation of the FISH signal in the Eindhoven–Borff–Seiden cellular automaton.
Abstract: Lech-Gustav Milroy,† Tom N. Grossmann,‡,§ Sven Hennig,‡ Luc Brunsveld,† and Christian Ottmann*,† †Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands ‡Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany

376 citations

Journal ArticleDOI
TL;DR: This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions.
Abstract: Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.

224 citations