scispace - formally typeset
Search or ask a question
Author

Damien Gratadour

Bio: Damien Gratadour is an academic researcher from University of Paris. The author has contributed to research in topics: Adaptive optics & Wavefront. The author has an hindex of 30, co-authored 143 publications receiving 3916 citations. Previous affiliations of Damien Gratadour include King Abdullah University of Science and Technology & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
02 Jul 2010-Science
TL;DR: It is shown that the ~10-million-year-oldβ Pictoris system hosts a massive giant planet, β Pictoris b, located 8 to 15 astronomical units from the star, which confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets.
Abstract: Here, we show that the ~10-million-year-old β Pictoris system hosts a massive giant planet, β Pictoris b, located 8 to 15 astronomical units from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, β Pictoris b is the closest to its parent star. Its short period could allow for recording of the full orbit within 17 years.

973 citations

Journal ArticleDOI
TL;DR: In this paper, a point-like signal is detected at a projected distance of 8 AU from the star, within the northeastern extension of the dust disk, which suggests a formation process by core accretion or disk instabilities rather than binary-like formation processes.
Abstract: Context. Since the discovery of its dusty disk in 1984, β Pictoris has become the prototype of young early-type planetary systems, and there are now various indications that a massive Jovian planet is orbiting the star at ∼10 AU. However, no planets have been detected around this star so far. Aims. Our goal was to investigate the close environment of β Pic, searching for planetary companion(s). Methods. Deep adaptive-optics L � -band images of β Pic were recorded using the NaCo instrument at the Very Large Telescope. Results. A faint point-like signal is detected at a projected distance of � 8 AU from the star, within the northeastern extension of the dust disk. Various tests were made to rule out possible instrumental or atmospheric artefacts at a good confidence level. The probability of a foreground or background contaminant is extremely low, based in addition on the analysis of previous deep HST images. Its L � = 11.2 apparent magnitude would indicate a typical temperature of ∼1500 K and a mass of ∼8 MJup. If confirmed, it could explain the main morphological and dynamical peculiarities of the β Pic system. The present detection is unique among A-stars by the proximity of the resolved planet to its parent star. Its closeness and location inside the β Pic disk suggest a formation process by core accretion or disk instabilities rather than binary-like formation processes.

635 citations

Journal ArticleDOI
TL;DR: The Gemini multiconjugate adaptive optics system (GeMS) at the Gemini South telescope in Cerro Pachon is the first sodium-based multilaser guide star (LGS) adaptive optics as discussed by the authors.
Abstract: The Gemini multiconjugate adaptive optics system (GeMS) at the Gemini South telescope in Cerro Pachon is the first sodium-based multilaser guide star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near-infrared, with uniform quality over a field of view of two square arcminutes. This paper is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light.

150 citations

Journal ArticleDOI
TL;DR: In this article, a giant planet was discovered around the young star β Pictoris and its companion was detected at K s, which independently confirmed the physical nature of β ǫ Pictoris b inferred from the L and NB_4.05 bands.
Abstract: Context. A giant planet was recently discovered around the young star β Pictoris. This planet is the closest to its parent star ever imaged. With an estimated mass of about 9 M Jup and separation of 8–15 AU, it explains most of the peculiarities of β Pictoris and its disk.Aims. Previous detections were made in the L ′ band (3.8 μ m) and at 4.05 μ m. We recorded new K s -band data (2.18 μ m) in order to measure its color and get an additional estimate of its mass and effective temperatureMethods. Angular differential K s -band images of β Pictoris were recorded with NaCo in March and April 2010.Results. The companion is detected at K s . This independently confirms the physical nature of β Pictoris b inferred from the L ′ and NB_4.05 bands. The increase of the projected separation between October–December 2009 and April 2010 observations is consistent within error bars with the expected orbital motion. Using the absolute K s photometry, “hot start” evolutionary models predict a mass of 7–11 M Jup in agreement with previous estimates. Moreover, this mass is compatible with T eff = 1700 ± 300 K derived from the comparison of the K s − L ′ color with those generated using synthetic spectra.

136 citations

Journal ArticleDOI
TL;DR: In this article, a multi-object adaptive optics (MOAO) system was successfully demonstrated on-sky for the first time at the 4.2m William Herschel Telescope, Canary Islands, Spain, at the end of September 2010.
Abstract: Context. A new challenging adaptive optics (AO) system, called multi-object adaptive optics (MOAO), has been successfully demonstrated on-sky for the first time at the 4.2 m William Herschel Telescope, Canary Islands, Spain, at the end of September 2010.Aims. This system, called CANARY, is aimed at demonstrating the feasibility of MOAO in preparation of a future multi-object near infra-red (IR) integral field unit spectrograph to equip extremely large telescopes for analysing the morphology and dynamics of high-z galaxies.Methods. CANARY compensates for the atmospheric turbulence with a deformable mirror driven in open-loop and controlled through a tomographic reconstruction by three widely separated off-axis natural guide star (NGS) wavefront sensors, which are in open loop too. We compared the performance of conventional closed-loop AO, MOAO, and ground-layer adaptive optics (GLAO) by analysing both IR images and simultaneous wave-front measurements.Results. In H -band, Strehl ratios of 0.20 are measured with MOAO while achieving 0.25 with closed-loop AO in fairly similar seeing conditions (r 0 ≈ 15 cm at 0.5 μ m). As expected, MOAO has performed at an intermediate level between GLAO and closed-loop AO.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The James Webb Space Telescope (JWST) as discussed by the authors is a large (6.6 m), cold (<50 K), infrared-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point.
Abstract: The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.

1,372 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the current empirical knowledge of stellar multiplicity for Main Sequence stars and brown dwarfs, as well as among populations of Pre-Main Sequence stars, and embedded protostars.
Abstract: Stellar multiplicity is an ubiquitous outcome of the star formation process Characterizing the frequency and main characteristics of multiple systems and their dependencies on primary mass and environment is therefore a powerful tool to probe this process While early attempts were fraught with selection biases and limited completeness, instrumentation breakthroughs in the last two decades now enable robust analyses In this review, we summarize our current empirical knowledge of stellar multiplicity for Main Sequence stars and brown dwarfs, as well as among populations of Pre-Main Sequence stars and embedded protostars Clear trends as a function of both primary mass and stellar evolutionary stage are identified that will serve as a comparison basis for numerical and analytical models of star formation

1,261 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the current evidence from the analysis of the orbits of more than two dozen stars and from measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 \times 1e6 Msun, beyond any reasonable doubt.
Abstract: The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite resolution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 \times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This 'S-star cluster' appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium 'stellar cusp' around a black hole. This constitutes a remarkable and presently not fully understood 'paradox of youth'. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.

1,115 citations

Posted Content
TL;DR: In 2014, the Science Definition Team (SDT) of the Wide Field Infrared Survey Telescope (WFIRST) mission presented a design reference mission (DRM) for an implementation of WFIRST using one of the 2.4m, Hubble-quality telescopes recently made available to NASA as discussed by the authors.
Abstract: This report describes the 2014 study by the Science Definition Team (SDT) of the Wide-Field Infrared Survey Telescope (WFIRST) mission. It is a space observatory that will address the most compelling scientific problems in dark energy, exoplanets and general astrophysics using a 2.4-m telescope with a wide-field infrared instrument and an optical coronagraph. The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Study Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality telescope assemblies recently made available to NASA. This DRM builds on the work of the earlier WFIRST SDT, reported by Green et al. (2012) and the previous WFIRST-2.4 DRM, reported by Spergel et. (2013). The 2.4-m primary mirror enables a mission with greater sensitivity and higher angular resolution than the 1.3-m and 1.1-m designs considered previously, increasing both the science return of the primary surveys and the capabilities of WFIRST as a Guest Observer facility. The addition of an on-axis coronagraphic instrument to the baseline design enables imaging and spectroscopic studies of planets around nearby stars.

1,009 citations

01 Sep 1998
TL;DR: A stellar spectral flux library of wide spectral coverage and an example of its application are presented in this paper, which consists of 131 flux-calibrated spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal-weak and metalrich F-K dwarf and G-K giant components.
Abstract: A stellar spectral flux library of wide spectral coverage and an example of its application are presented. The new library consists of 131 flux-calibrated spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal-weak and metal-rich F-K dwarf and G-K giant components. Each library spectrum was formed by combining data from several sources overlapping in wavelength coverage. The SIMBAD database, measured colors, and line strengths were used to check that each input component has closely similar stellar type. The library has complete spectral coverage from 1150 to 10620 Afor all components and to 25000 Afor about half of them, mainly later types of solar abundance. Missing spectral coverage in the infrared currently consists of a smooth energy distribution formed from standard colors for the relevant types. The library is designed to permit inclusion of additional digital spectra, particularly of non-solar abundance stars in the infrared, as they become available. The library spectra are each given as Fl versus l, from 1150 to 25000 Ain steps of 5 A ˚. A program to combine the library spectra in the ratios appropriate to a selected isochrone is described and an example of a spectral component signature of a composite population of solar age and metallicity is illustrated. The library spectra and associated tables are available as text files by remote electronic access.

999 citations