scispace - formally typeset
Search or ask a question
Author

Daming Gao

Other affiliations: Hefei University
Bio: Daming Gao is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Quenching (fluorescence) & Nanoparticle. The author has an hindex of 5, co-authored 5 publications receiving 985 citations. Previous affiliations of Daming Gao include Hefei University.

Papers
More filters
Journal ArticleDOI
TL;DR: A critical value of shell thickness for the maximum rebindingcapacity was determined by testing the evolution of rebinding capacity with shell thickness, which provides new insights into the effectiveness of molecular imprinting and the form of imprinted materials.
Abstract: This paper reports a surface functional monomer-directing strategy for the highly dense imprinting of 2,4,6-trinitrotoluene (TNT) molecules at the surface of silica nanoparticles. It has been demonstrated that the vinyl functional monomer layer of the silica surface can not only direct the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers, but also drive TNT templates into the formed polymer shells through the charge-transfer complexing interactions between TNT and the functional monomer layer. The two basic processes lead to the formation of uniform core−shell TNT-imprinted nanoparticles with a controllable shell thickness and a high density of effective recognition sites. The high capacity and fast kinetics to uptake TNT molecules show that the density of effective imprinted sites in the nanoshells is nearly 5 times that of traditional imprinted particles. A critical value of shell thickness for the maximu...

533 citations

Journal ArticleDOI
TL;DR: The simple FRET-based nanoparticle sensors reported here exhibit a high and stable fluorescence brightness, strong analyte affinity, and good assembly flexibility and can thus find many applications in the detection of ultratrace analytes.
Abstract: This paper reports a resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles for the ultrasensitive detection of 2,4,6-trinitrotoluene (TNT) in solution and vapor environments. Fluorescence dye and organic amine were covalently modified onto the surface of silica nanoparticles to form a hybrid monolayer of dye fluorophores and amine ligands. The fluorescent silica particles can specifically bind TNT species by the charge-transfer complexing interaction between electron-rich amine ligands and electron-deficient aromatic rings. The resultant TNT−amine complexes bound at the silica surface can strongly suppress the fluorescence emission of the chosen dye by the fluorescence resonance energy transfer (FRET) from dye donor to the irradiative TNT−amine acceptor through intermolecular polar−polar interactions at spatial proximity. The quenching efficiency of the hybrid nanoparticles with TNT is greatly amplified by at least 10-fold that of the corresponding pure dye. Th...

236 citations

Journal ArticleDOI
TL;DR: The inverted opal film with a stable fluorescence brightness and strong analyte affinity has lead to an ultrasensitive detection of several ppb of TNT vapor in air.
Abstract: This paper reports an inverted opal fluorescence chemosensor for the ultrasensitive detection of explosive nitroaromatic vapors through resonance-energy-transfer-amplified fluorescence quenching. The inverted opal silica film with amino ligands was first fabricated by the acid-base interaction between 3-aminopropyltriethoxysilane and surface sulfonic groups on polystyrene microsphere templates. The fluorescent dye was then chemically anchored onto the interconnected porous surface to form a hybrid monolayer of amino ligands and dye molecules. The amino ligands can efficiently capture vapor molecules of nitroaromatics such as 2,4,6-trinitrotoluene (TNT) through the charge-transfer complexing interaction between electron-rich amino ligands and electron-deficient aromatic rings. Meanwhile, the resultant TNT-amine complexes can strongly suppress the fluorescence emission of the chosen dye by the fluorescent resonance energy transfer (FRET) from the dye donor to the irradiative TNT-amino acceptor through intermolecular polar-polar resonance at spatial proximity. The quenching response of the highly ordered porous films with TNT is greatly amplified by at least 10-fold that of the amorphous silica films, due to the interconnected porous structure and large surface-to-volume ratio. The inverted opal film with a stable fluorescence brightness and strong analyte affinity has lead to an ultrasensitive detection of several ppb of TNT vapor in air.

64 citations

Journal ArticleDOI
17 Aug 2009-Analyst
TL;DR: A layer-by-layer (LbL) molecular imprinting strategy for constructing molecular recognition sites at the surface of colloidal silica particles by glutaraldehyde-mediated covalent assembly of gelatin protein in aqueous media will open a new window of interest in the exploration of novel molecular recognition systems for application in chemosensors, selective separation, and drug screening and release.
Abstract: In this paper, we report a layer-by-layer (LbL) molecular imprinting strategy for constructing molecular recognition sites at the surface of colloidal silica particles by glutaraldehyde (GA)-mediated covalent assembly of gelatin protein in aqueous media. Accompanying the repeated coating of gelatin at the amine-capped silica particles, 2,4,6-trinitrotoluene (TNT) templates were synchronously imprinted into the formed gelatin shells by the charge-transfer interaction between the electron-deficient aromatic rings of TNT and the electron-rich amino groups of gelatin chains. The effective molecular recognition sites generated at the protein interlayers of gelatin shells of monodisperse silica@gelatin particles, and the rebinding TNT capacities changed nonlinearly with the layer number of imprinted gelatin. Three layers of imprinted gelatin produced the largest imprinting factor of ∼3.0, which is explained by the covalent assembly mechanism. The imprinting protocol is applicable to a broad range of biomaterials (such as proteins, enzymes, chitosan and biopolymers) for imprinting various molecules in aqueous media. Therefore, these results reported here will open a new window of interest in the exploration of novel molecular recognition systems for application in chemosensors, selective separation, and drug screening and release.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology as discussed by the authors, and a comprehensive overview of synthetic strategies for hollow structures is presented.
Abstract: Hollow micro-/nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-/nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed.

2,767 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: This work proposes to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs.
Abstract: Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

1,647 citations

Journal ArticleDOI
TL;DR: This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs.
Abstract: Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity, physical robustness, thermal stability, as well as low cost and easy preparation. With the rapid development of MIT as a research hotspot, it faces a number of challenges, involving biological macromolecule imprinting, heterogeneous binding sites, template leakage, incompatibility with aqueous media, low binding capacity and slow mass transfer, which restricts its applications in various aspects. This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs. Finally, some significant attempts in further developing MIT are also proposed (236 references).

1,468 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the state-of-the-art research activities related to ZnS nanostructures is provided, with the focus on the critical experiments determining the electrical, chemical and physical parameters of the nanostructure, and the interplay between synthetic conditions and nanoscale morphologies.

1,090 citations