scispace - formally typeset
Search or ask a question
Author

Dan Chen

Bio: Dan Chen is an academic researcher from Iowa State University. The author has contributed to research in topics: Ferritin & Serum iron. The author has an hindex of 3, co-authored 3 publications receiving 45 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated whether habitual consumption of an HP diet reduces the inhibitory effect of phytate on nonheme-iron absorption among young women with suboptimal iron stores.
Abstract: BACKGROUND High phytate (HP) consumption is a concern in developing countries because of the high prevalence of iron deficiency in these countries. OBJECTIVE We investigated whether habitual consumption of an HP diet reduces the inhibitory effect of phytate on nonheme-iron absorption. METHODS Thirty-two nonanemic females, 18-35 y of age, with normal body mass index but with suboptimal iron stores (serum ferritin, ≤30 μg/L), were matched for serum ferritin concentration and randomly assigned to HP and low-phytate (LP) groups, in a parallel design study. Each subject consumed HP or LP foods with at least 2 of their daily meals for 8 wk, resulting in a change in phytate intake (from 718 to 1190 mg/d in the HP group and 623 to 385 mg/d in the LP group). The serum iron response over 4 h after a test meal containing 350 mg of phytate was measured at baseline and postintervention. Ferritin, transferrin receptor, and hepcidin concentrations were measured at baseline and 8 wk. RESULTS Twenty-eight subjects completed the study (n = 14 per group). The serum iron response to the test meal increased in the HP group at postintervention, resulting in a 41% increase in the area under the curve (AUC; P < 0.0001). However, no effect was observed in the LP group (21% decrease in AUC; P = 0.76). The postintervention serum iron response was lower (P < 0.0001) in the LP group than in the HP group after controlling for the baseline serum iron response and hepcidin concentration, reflecting in a 64% lower AUC. CONCLUSIONS We found that habitual consumption of an HP diet can reduce the negative effect of phytate on nonheme-iron absorption among young women with suboptimal iron stores. Future studies are needed to explore possible mechanisms. This trial was registered at clinicaltrials.gov as NCT02370940.

37 citations

Journal ArticleDOI
01 Jan 2015
TL;DR: In this article, the authors compared the relationship between maternal and infants' body iron in smokers and non-smokers in a large matched-pair cohort and found that women who smoked had lower sTfR, higher ferritin and higher body iron compared to nonsmoking women.
Abstract: Background Maternal smoking has been known to have a negative impact on the well being of the developing fetus. Prenatal smoking has been associated with premature births, low birth weight and with certain birth defects. Small research studies have also found a negative correlation between maternal smoking and neonatal body iron. Objectives To study and compare the relationship between maternal and infants' body iron in smokers and non-smokers in a large matched-pair cohort. Methods This was a prospective cohort study involving 144 mothers - 72 smokers and 72 non-smokers and their respective infants. Samples were obtained from maternal and infants' cord blood at delivery for Serum transferrin receptor (sTfR) and ferritin levels. Serum TfR and ferritin were measured by RAMCO ELISA and RIA assays. Total Body Iron (TBI) was calculated using the sTfR/ferritin ratio in a previously described formula by Cook et al. Results Women who smoked had lower sTfR, higher ferritin and higher body iron compared to nonsmoking women. In contrast to their respective mothers, we found a small, but statistically significant negative correlation between smoking and infants' total body iron. The number of packs per day smoked was also negatively correlated with infants' ferritin and total body iron. Lower birth weight was noted in babies of smokers compared to nonsmokers (mean /- SD =3270 +/-475 vs. 3393 g +/- 475 g, p=0.03). Conclusion Women who smoked during pregnancy had higher iron stores but their newborn infants had lower iron stores than those of non-smoking mothers. The more packs per day (PPD) and more days smoked during pregnancy led to lower total body iron of the babies. There may be a negative dose-dependent response between fetal smoke exposure and infant iron stores.

17 citations

Journal ArticleDOI
TL;DR: 3 cups of green tea consumption for 3 months can improve antioxidant status and reduce oxidative damage in PD patients, and further studies are needed to determine if these changes result in slowing the disease progression.
Abstract: Oxidative stress is one of the underlying causes of Parkinson’s disease (PD). Because of its antioxidant effect, we hypothesize that green tea consumption (3 cups daily for 3 months) would improve antioxidant status and reduces oxidative damage in Parkinson’s disease. Fifteen subjects who were within the first five years of PD, on stable PD medication, and not regular green tea consumers were recruited. Iron status, oxidative stress and PD status were evaluated before and after 3 months of green tea consumption. Hemoglobin, serum iron, iron saturation and ferritin concentrations were used to assess iron status. Antioxidant enzymes including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured to determine antioxidant status. Lipid peroxidation and protein carbonyls were measured as oxidative damage markers. There were no changes in total motor scores of the Unified Parkinson’s Disease Rating Scale (UPDRS), PDQ-39 total scores and various iron status markers after 3 months. Catalase (p < 0.05) and SOD activities (p < 0.005) were increased significantly indicating an improvement of antioxidant status. Both lipid peroxidation and protein carbonyls decreased by ~52% (p < 0.01) with green tea consumption, indicating less oxidative stress. In conclusion, 3 cups of green tea consumption for 3 months can improve antioxidant status and reduce oxidative damage in PD patients. Further studies are needed to determine if these changes result in slowing the disease progression.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research, and supports the safety and benefits of soyfoods.
Abstract: Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided.

282 citations

Journal ArticleDOI
TL;DR: Overall, this study demonstrated that EGCG regulated the iron-export protein ferroportin in substantia nigra, reduced oxidative stress, and exerted a neurorescue effect against MPTP-induced functional and neurochemical deficits in mice.
Abstract: Background: Parkinson disease (PD) is a neurodegenerative disorder that has been associated with many factors, including oxidative stress, inflammation, and iron accumulation. The antioxidant, anti-inflammatory, and iron-chelating properties of epigallocatechin gallate (EGCG), a major polyphenol in green tea, may offer protection against PD.Objective: We sought to determine the neurorescue effects of EGCG and the role of iron in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD.Methods: We evaluated the neurorescue effect of EGCG (25 mg/kg, 7 d, oral administration) against MPTP-induced (20 mg/kg, 3 d, intraperitoneal injection) neurodegeneration in C57 male black mice. Thirty mice weighing ∼25 g were divided into 3 groups: control, MPTP, and MPTP + EGCG. The neurorescue effect of EGCG was assessed with the use of motor behavior tests, neurotransmitter analysis, oxidative stress indicators, and iron-related protein expression.Results: Compared with the control group, MPTP treatment shortened the mice's latency to fall from the rotarod by 16% (P < 0.05), decreased the striatal dopamine concentration by 58% (P < 0.001) and dihydroxyphenylacetic acid by 35% (P < 0.05), and increased serum protein carbonyls by 71% (P = 0.07). However, EGCG rescued MPTP-induced neurotoxicity by increasing the rotational latency by 17% (P < 0.05) to a value similar to the control group. Striatal dopamine concentrations were 40% higher in the MPTP + EGCG group than in the MPTP group (P < 0.05), but the values were significantly lower than in the control group. Compared with the MPTP and control groups, mice in the MPTP + EGCG group had higher substantia nigra ferroportin expression (44% and 35%, respectively) (P < 0.05) but not hepcidin and divalent metal transporter 1 expression.Conclusion: Overall, our study demonstrated that EGCG regulated the iron-export protein ferroportin in substantia nigra, reduced oxidative stress, and exerted a neurorescue effect against MPTP-induced functional and neurochemical deficits in mice.

100 citations

Journal ArticleDOI
19 Jan 2017
TL;DR: It is suggested that long-term tannin consumption may impact iron status in a different manner than single-meal studies or bioavailability iron models predict, and iron bioavailability studies that use condensed tannins, which are more commonly consumed, may better predict mealtimeIron bioavailability.
Abstract: Iron deficiency remains a global health issue, and antinutritional factors, such as tannins, are often cited as contributors to the high prevalence of deficiency. Despite this, tannin-rich diets may have potential beneficial cardiovascular and cancer-fighting properties because of the antioxidant activity of tannins. Furthermore, epidemiologic studies and long-term trials involving participants who consumed diets rich in antinutritional factors, particularly tannins, conflict with single-meal bioavailability studies. The purpose of this narrative review is to determine the effect of tannins on iron bioavailability and status and establish whether adaptation to tannins reduces the antinutritional effects of tannins over time. We also aimed to compare tannins used in iron studies. Common themes related to iron bioavailability and iron status with tannin consumption were collected and collated for summary and synthesis based on models and subjects used. Overall, there was dissonance between iron bioavailability and status in studies. Single-meal studies with hydrolyzable and oligomeric catechin and epicatechin tannins (tea and tannic acid) generally support reductions in bioavailability related to tannin consumption but not consumption of condensed tannin, which are more commonly found in food. Long-term animal model, epidemiologic, and multimeal studies generally do not support changes in iron status related to tannin intake. Studies suggest that long-term tannin consumption may impact iron status in a different manner than single-meal studies or bioavailability iron models predict. Furthermore, iron bioavailability studies that use condensed tannins, which are more commonly consumed, may better predict mealtime iron bioavailability. More research is needed to develop representative antinutritional iron studies and investigate mechanisms underlying the adaptation to tannins and other antinutritional factors that occur over time.

80 citations

Journal ArticleDOI
TL;DR: It is proposed that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.
Abstract: Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.

77 citations

Journal ArticleDOI
TL;DR: The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.
Abstract: Plant-based diets are associated with reduced risk of lifestyle-induced chronic diseases. The thousands of phytochemicals they contain are implicated in cellular-based mechanisms to promote antioxidant defense and reduce inflammation. While recommendations encourage the intake of fruits and vegetables, most people fall short of their target daily intake. Despite the need to increase plant-food consumption, there have been some concerns raised about whether they are beneficial because of the various ‘anti-nutrient’ compounds they contain. Some of these anti-nutrients that have been called into question included lectins, oxalates, goitrogens, phytoestrogens, phytates, and tannins. As a result, there may be select individuals with specific health conditions who elect to decrease their plant food intake despite potential benefits. The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.

74 citations