scispace - formally typeset
Search or ask a question
Author

Dan Klein

Other affiliations: Cornell University, Facebook, Stanford University  ...read more
Bio: Dan Klein is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Parsing & Natural language. The author has an hindex of 78, co-authored 266 publications receiving 28295 citations. Previous affiliations of Dan Klein include Cornell University & Facebook.


Papers
More filters
Proceedings ArticleDOI
27 May 2003
TL;DR: A new part-of-speech tagger is presented that demonstrates the following ideas: explicit use of both preceding and following tag contexts via a dependency network representation, broad use of lexical features, and effective use of priors in conditional loglinear models.
Abstract: We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective use of priors in conditional loglinear models, and (iv) fine-grained modeling of unknown word features. Using these ideas together, the resulting tagger gives a 97.24% accuracy on the Penn Treebank WSJ, an error reduction of 4.4% on the best previous single automatically learned tagging result.

3,466 citations

Proceedings ArticleDOI
07 Jul 2003
TL;DR: It is demonstrated that an unlexicalized PCFG can parse much more accurately than previously shown, by making use of simple, linguistically motivated state splits, which break down false independence assumptions latent in a vanilla treebank grammar.
Abstract: We demonstrate that an unlexicalized PCFG can parse much more accurately than previously shown, by making use of simple, linguistically motivated state splits, which break down false independence assumptions latent in a vanilla treebank grammar. Indeed, its performance of 86.36% (LP/LR F1) is better than that of early lexicalized PCFG models, and surprisingly close to the current state-of-the-art. This result has potential uses beyond establishing a strong lower bound on the maximum possible accuracy of unlexicalized models: an unlexicalized PCFG is much more compact, easier to replicate, and easier to interpret than more complex lexical models, and the parsing algorithms are simpler, more widely understood, of lower asymptotic complexity, and easier to optimize.

3,291 citations

Proceedings ArticleDOI
17 Jul 2006
TL;DR: An automatic approach to tree annotation in which basic nonterminal symbols are alternately split and merged to maximize the likelihood of a training treebank is presented.
Abstract: We present an automatic approach to tree annotation in which basic nonterminal symbols are alternately split and merged to maximize the likelihood of a training treebank. Starting with a simple X-bar grammar, we learn a new grammar whose nonterminals are subsymbols of the original nonterminals. In contrast with previous work, we are able to split various terminals to different degrees, as appropriate to the actual complexity in the data. Our grammars automatically learn the kinds of linguistic distinctions exhibited in previous work on manual tree annotation. On the other hand, our grammars are much more compact and substantially more accurate than previous work on automatic annotation. Despite its simplicity, our best grammar achieves an F1 of 90.2% on the Penn Treebank, higher than fully lexicalized systems.

957 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: The authors decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained.
Abstract: Visual question answering is fundamentally compositional in nature—a question like where is the dog? shares substructure with questions like what color is the dog? and where is the cat? This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning neural module networks, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.

942 citations

Journal ArticleDOI
TL;DR: The purpose is to support the abstractions used in practice by software designers, and sketches a model for defining architectures and presents an implementation of the basic level of that model.
Abstract: Architectures for software use rich abstractions and idioms to describe system components, the nature of interactions among the components, and the patterns that guide the composition of components into systems. These abstractions are higher level than the elements usually supported by programming languages and tools. They capture packaging and interaction issues as well as computational functionality. Well-established (if informal) patterns guide the architectural design of systems. We sketch a model for defining architectures and present an implementation of the basic level of that model. Our purpose is to support the abstractions used in practice by software designers. The implementation provides a testbed for experiments with a variety of system construction mechanisms. It distinguishes among different types of components and different ways these components can interact. It supports abstract interactions such as data flow and scheduling on the same footing as simple procedure call. It can express and check appropriate compatibility restrictions and configuration constraints. It accepts existing code as components, incurring no runtime overhead after initialization. It allows easy incorporation of specifications and associated analysis tools developed elsewhere. The implementation provides a base for extending the notation and validating the model. >

892 citations


Cited by
More filters
Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

Proceedings Article
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Proceedings ArticleDOI
17 Aug 2015
TL;DR: A global approach which always attends to all source words and a local one that only looks at a subset of source words at a time are examined, demonstrating the effectiveness of both approaches on the WMT translation tasks between English and German in both directions.
Abstract: An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time. We demonstrate the effectiveness of both approaches on the WMT translation tasks between English and German in both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems that already incorporate known techniques such as dropout. Our ensemble model using different attention architectures yields a new state-of-the-art result in the WMT’15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker. 1

8,055 citations

Proceedings ArticleDOI
15 Feb 2018
TL;DR: This paper introduced a new type of deep contextualized word representation that models both complex characteristics of word use (e.g., syntax and semantics), and how these uses vary across linguistic contexts (i.e., to model polysemy).
Abstract: We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

7,412 citations