scispace - formally typeset
Search or ask a question
Author

Dan-Xia Xu

Bio: Dan-Xia Xu is an academic researcher from National Research Council. The author has contributed to research in topics: Silicon photonics & Grating. The author has an hindex of 53, co-authored 384 publications receiving 10180 citations. Previous affiliations of Dan-Xia Xu include Linköping University & Carleton University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths.
Abstract: Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.

939 citations

Journal ArticleDOI
TL;DR: Sub-wavelength structures with a subwavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves as discussed by the authors, and their applications include anti-reflective coatings, polarization rotators, high-efficiency fiber-chip cou-plers, spectrometers, highreflectivity mirrors, athermal waveg- uides, multimode interference couplers.
Abstract: Periodic structures with a sub-wavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves. While the use of these structures in waveguide optics was proposed in the 1990s, it has been with the more recent developments of silicon photonics and high-precision lithography techniques that sub-wavelength structures have found widespread application in the field of pho- tonics. This review first provides an introduction to the physics of sub-wavelength structures. An overview of the applications of sub-wavelength structures is then given including: anti-reflective coatings, polarization rotators, high-efficiency fiber-chip cou- plers, spectrometers, high-reflectivity mirrors, athermal waveg- uides, multimode interference couplers, and dispersion engi- neered, ultra-broadband waveguide couplers among others. Particular attention is paid to providing insight into the design strategies for these devices. The concluding remarks provide an outlook on the future development of sub-wavelength structures and their impact in photonics.

496 citations

Journal ArticleDOI
TL;DR: Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguide with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides.
Abstract: We report on the experimental demonstration and analysis of a new waveguide principle using subwavelength gratings. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a conventional index-guided structure and does not exhibit optically resonant behaviour. Subwavelength grating waveguides in silicon-on-insulator are fabricated with a single etch step and allow for flexible control of the effective refractive index of the waveguide core simply by lithographic patterning. Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguides with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides. The measured group index is nearly constant n(g) ~1.5 over a wavelength range exceeding the telecom C-band.

288 citations

Journal ArticleDOI
TL;DR: Two experimental examples of refractive index engineering are demonstrated, namely, a microphotonic fiber-chip coupler with a coupling loss as small as -0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide.
Abstract: We use subwavelength gratings (SWGs) to engineer the refractive index in microphotonic waveguides, including practical components such as input couplers and multiplexer circuits. This technique allows for direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6–3.5 by lithographic patterning. We demonstrate two experimental examples of refractive index engineering, namely, a microphotonic fiber-chip coupler with a coupling loss as small as −0.9dB and minimal wavelength dependence and a planar waveguide multiplexer with SWG nanostructure, which acts as a slab waveguide for light diffracted by the grating, while at the same time acting as a lateral cladding for the strip waveguide. This yields an operation bandwidth of 170nm for a device size of only ~160μm×100μm.

285 citations

Journal ArticleDOI
TL;DR: In this paper, a Si photonic wire waveguide was incorporated into a Mach-Zehnder interferometer based sensor, configured to monitor the index change of a homogeneous solution.
Abstract: We demonstrate a new, highly sensitive evanescent field sensor using silicon-on-insulator (SOI) photonic wire waveguides Theoretical analysis shows that thin SOI waveguides can provide higher sensitivity over devices based in all other common planar waveguide material systems for the probing of both thin adsorbed biomolecular layers and bulk homogeneous solutions A Si photonic wire waveguide was incorporated into a Mach-Zehnder interferometer based sensor, configured to monitor the index change of a homogeneous solution High effective index change of 031 per refractive index unit (RIU) change of the solution was measured, confirming theoretical predictions

284 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations

Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

Journal ArticleDOI
28 Oct 2004-Nature
TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Abstract: Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.

1,506 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the basis for each technique, recent developments in methods and performance limitations, and present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.
Abstract: The detection and measurement of gas concentrations using the characteristic optical absorption of the gas species is important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. This study reviews the field, covering several individual gas detection techniques including non-dispersive infrared, spectrophotometry, tunable diode laser spectroscopy and photoacoustic spectroscopy. We present the basis for each technique, recent developments in methods and performance limitations. The technology available to support this field, in terms of key components such as light sources and gas cells, has advanced rapidly in recent years and we discuss these new developments. Finally, we present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.

1,293 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
Abstract: Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications. This article reviews recent progress in the use of silicon nitride and Hydex as non-silicon-based CMOS-compatible platforms for nonlinear optics. New capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement using these materials, and their potential future impact and challenges are covered.

1,218 citations