scispace - formally typeset
Search or ask a question
Author

Daniel Arthur Corpuz Fisher

Bio: Daniel Arthur Corpuz Fisher is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Proinflammatory cytokine & Ruxolitinib. The author has an hindex of 1, co-authored 1 publications receiving 3 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET), and the equivalent emergence of primary myelofibrosis (PMF).
Abstract: Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results underscore the importance of large, randomized controlled trials in these heterogeneous myeloid diseases and the value of remaining on therapy >3 cycles.

25 citations

Journal ArticleDOI
TL;DR: In this paper , the PD-1/PD-L1 pathway activated in immune microenvironment, the milieu of BM shift to immunosuppressive, contributing to a clonal evolution of blasts.
Abstract: Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases arising from the bone marrow (BM), and approximately 30% of MDS eventually progress to AML, associated with increasingly aggressive neoplastic hematopoietic clones and poor survival. Dysregulated immune microenvironment has been recognized as a key pathogenic driver of MDS and AML, causing high rate of intramedullary apoptosis in lower-risk MDS to immunosuppression in higher-risk MDS and AML. Immune checkpoint molecules, including programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), play important roles in oncogenesis by maintaining an immunosuppressive tumor microenvironment. Recently, both molecules have been examined in MDS and AML. Abnormal inflammatory signaling, genetic and/or epigenetic alterations, interactions between cells, and treatment of patients all have been involved in dysregulating PD-1/PD-L1 signaling in these two diseases. Furthermore, with the PD-1/PD-L1 pathway activated in immune microenvironment, the milieu of BM shift to immunosuppressive, contributing to a clonal evolution of blasts. Nevertheless, numerous preclinical studies have suggested a potential response of patients to PD-1/PD-L1 blocker. Current clinical trials employing these drugs in MDS and AML have reported mixed clinical responses. In this paper, we focus on the recent preclinical advances of the PD-1/PD-L1 signaling in MDS and AML, and available and ongoing outcomes of PD-1/PD-L1 inhibitor in patients. We also discuss the novel PD-1/PD-L1 blocker-based immunotherapeutic strategies and challenges, including identifying reliable biomarkers, determining settings, and exploring optimal combination therapies.

16 citations

Journal ArticleDOI
TL;DR: This article showed that the addition of navitoclax to ruxolitinib induced a 35% or greater reduction in spleen volume (SVR35) and reduced symptoms in patients with myelofibrosis no longer benefiting from ruxolaxinib.

14 citations

Journal ArticleDOI
02 May 2022-Cancer
TL;DR: In this article , the authors discuss recent clinical trial data of agents in development and dissect the potential for novel end points to act as disease modifying parameters, using the rationale garnered from latest clinical and scientific evidence, the authors propose a definition of disease modification in myelofibrosis.
Abstract: The development of targeted therapies for the treatment of myelofibrosis highlights a unique issue in a field that has historically relied on symptom relief, rather than survival benefit or modification of disease course, as key response criteria. There is, therefore, a need to understand what constitutes disease modification of myelofibrosis to advance appropriate drug development and therapeutic pathways. Here, the authors discuss recent clinical trial data of agents in development and dissect the potential for novel end points to act as disease modifying parameters. Using the rationale garnered from latest clinical and scientific evidence, the authors propose a definition of disease modification in myelofibrosis. With improved overall survival a critical outcome, alongside the normalization of hematopoiesis and improvement in bone marrow fibrosis, there will be an increasing need for surrogate measures of survival for use in the early stages of trials. As such, the design of future clinical trials will require re-evaluation and updating to incorporate informative parameters and end points with standardized definitions and methodologies.

11 citations

Journal ArticleDOI
TL;DR: Navtemadlin (KRT-232) as mentioned in this paper restores p53 activity to drive apoptosis of wild-type TP53 tumor cells by inducing expression of pro-apoptotic Bcl-2 family proteins.
Abstract: Patients with myelofibrosis (MF) who discontinue ruxolitinib due to progression/resistance have poor prognoses. JAK inhibitors control symptoms and reduce spleen volumes with limited impact on underlying disease pathophysiology. Murine double minute 2 (MDM2), a negative regulator of p53, is overexpressed in circulating malignant CD34+ MF cells. The oral MDM2 inhibitor navtemadlin (KRT-232) restores p53 activity to drive apoptosis of wild-type TP53 tumor cells by inducing expression of pro-apoptotic Bcl-2 family proteins. Navtemadlin demonstrated promising clinical and disease-modifying activity and acceptable safety in a phase II study in patients with relapsed/refractory MF. The randomized phase III BOREAS study compares the efficacy and safety of navtemadlin to best available therapy in patients with MF that is relapsed/refractory to JAK inhibitor treatment.

9 citations