scispace - formally typeset
Search or ask a question
Author

Daniel Avrahami

Bio: Daniel Avrahami is an academic researcher from Intel. The author has contributed to research in topics: Interface (computing) & Touchscreen. The author has an hindex of 23, co-authored 62 publications receiving 2872 citations. Previous affiliations of Daniel Avrahami include Fuji Xerox & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI
04 Apr 2009
TL;DR: It is shown that explanations describing why the system behaved a certain way resulted in better understanding and stronger feelings of trust, and automatically providing explanations about a system's decision process can help mitigate this problem.
Abstract: Context-aware intelligent systems employ implicit inputs, and make decisions based on complex rules and machine learning models that are rarely clear to users. Such lack of system intelligibility can lead to loss of user trust, satisfaction and acceptance of these systems. However, automatically providing explanations about a system's decision process can help mitigate this problem. In this paper we present results from a controlled study with over 200 participants in which the effectiveness of different types of explanations was examined. Participants were shown examples of a system's operation along with various automatically generated explanations, and then tested on their understanding of the system. We show, for example, that explanations describing why the system behaved a certain way resulted in better understanding and stronger feelings of trust. Explanations describing why the system did not behave a certain way, resulted in lower understanding yet adequate performance. We discuss implications for the use of our findings in real-world context-aware applications.

506 citations

Proceedings ArticleDOI
21 Sep 2008
TL;DR: It is shown that participants who had an awareness display were able to maintain their physical activity level (even during the holidays), while the level of physical activity for participants who did not have an Awareness display dropped significantly.
Abstract: Personal, mobile displays, such as those on mobile phones, are ubiquitous, yet for the most part, underutilized. We present results from a field experiment that investigated the effectiveness of these displays as a means for improving awareness of daily life (in our case, self-monitoring of physical activity). Twenty-eight participants in three experimental conditions used our UbiFit system for a period of three months in their day-to-day lives over the winter holiday season. Our results show, for example, that participants who had an awareness display were able to maintain their physical activity level (even during the holidays), while the level of physical activity for participants who did not have an awareness display dropped significantly. We discuss our results and their general implications for the use of everyday mobile devices as awareness displays.

457 citations

Journal ArticleDOI
TL;DR: This article presents a series of studies that quantitatively demonstrate that simple sensors can support the construction of models that estimate human interruptibility as well as people do, and therefore their use in everyday office environments is both practical and affordable.
Abstract: A person seeking another person's attention is normally able to quickly assess how interruptible the other person currently is. Such assessments allow behavior that we consider natural, socially appropriate, or simply polite. This is in sharp contrast to current computer and communication systems, which are largely unaware of the social situations surrounding their usage and the impact that their actions have on these situations. If systems could model human interruptibility, they could use this information to negotiate interruptions at appropriate times, thus improving human computer interaction.This article presents a series of studies that quantitatively demonstrate that simple sensors can support the construction of models that estimate human interruptibility as well as people do. These models can be constructed without using complex sensors, such as vision-based techniques, and therefore their use in everyday office environments is both practical and affordable. Although currently based on a demographically limited sample, our results indicate a substantial opportunity for future research to validate these results over larger groups of office workers. Our results also motivate the development of systems that use these models to negotiate interruptions at socially appropriate times.

366 citations

Proceedings ArticleDOI
05 Apr 2003
TL;DR: The results of this Wizard of Oz study are very promising, with the overall accuracy of several models reaching about 78%.
Abstract: A person seeking someone else's attention is normally able to quickly assess how interruptible they are. This assessment allows for behavior we perceive as natural, socially appropriate, or simply polite. On the other hand, today's computer systems are almost entirely oblivious to the human world they operate in, and typically have no way to take into account the interruptibility of the user. This paper presents a Wizard of Oz study exploring whether, and how, robust sensor-based predictions of interruptibility might be constructed, which sensors might be most useful to such predictions, and how simple such sensors might be.The study simulates a range of possible sensors through human coding of audio and video recordings. Experience sampling is used to simultaneously collect randomly distributed self-reports of interruptibility. Based on these simulated sensors, we construct statistical models predicting human interruptibility and compare their predictions with the collected self-report data. The results of these models, although covering a demographically limited sample, are very promising, with the overall accuracy of several models reaching about 78%. Additionally, a model tuned to avoiding unwanted interruptions does so for 90% of its predictions, while retaining 75% overall accuracy.

320 citations

Proceedings ArticleDOI
04 Oct 2009
TL;DR: Bonfire is neither a pure laptop system nor a pure tabletop system, but an integration of the two into one new nomadic computing platform that provides a horizontal surface in tandem with the usual vertical laptop display, allowing direct pointing and gestures, and enlarges the input/output space to enrich existing applications.
Abstract: We present Bonfire, a self-contained mobile computing system that uses two laptop-mounted laser micro-projectors to project an interactive display space to either side of a laptop keyboard. Coupled with each micro-projector is a camera to enable hand gesture tracking, object recognition, and information transfer within the projected space. Thus, Bonfire is neither a pure laptop system nor a pure tabletop system, but an integration of the two into one new nomadic computing platform. This integration (1) enables observing the periphery and responding appropriately, e.g., to the casual placement of objects within its field of view, (2) enables integration between physical and digital objects via computer vision, (3) provides a horizontal surface in tandem with the usual vertical laptop display, allowing direct pointing and gestures, and (4) enlarges the input/output space to enrich existing applications. We describe Bonfire's architecture, and offer scenarios that highlight Bonfire's advantages. We also include lessons learned and insights for further development and use.

156 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal Article

3,099 citations

01 Jan 2014
TL;DR: Using Language部分的�’学模式既不落俗套,又能真正体现新课程标准所倡导的�'学理念,正是年努力探索的问题.
Abstract: 人教版高中英语新课程教材中,语言运用(Using Language)是每个单元必不可少的部分,提供了围绕单元中心话题的听、说、读、写的综合性练习,是单元中心话题的延续和升华.如何设计Using Language部分的教学,使自己的教学模式既不落俗套,又能真正体现新课程标准所倡导的教学理念,正是广大一线英语教师一直努力探索的问题.

2,071 citations

Proceedings Article
25 Apr 2018
TL;DR: This work introduces a novel model-agnostic system that explains the behavior of complex models with high-precision rules called anchors, representing local, “sufficient” conditions for predictions, and proposes an algorithm to efficiently compute these explanations for any black-box model with high probability guarantees.
Abstract: We introduce a novel model-agnostic system that explains the behavior of complex models with high-precision rules called anchors, representing local, "sufficient" conditions for predictions. We propose an algorithm to efficiently compute these explanations for any black-box model with high-probability guarantees. We demonstrate the flexibility of anchors by explaining a myriad of different models for different domains and tasks. In a user study, we show that anchors enable users to predict how a model would behave on unseen instances with less effort and higher precision, as compared to existing linear explanations or no explanations.

1,450 citations