scispace - formally typeset
Search or ask a question
Author

Daniel Bélanger

Bio: Daniel Bélanger is an academic researcher from Université du Québec à Montréal. The author has contributed to research in topics: Cyclic voltammetry & Electrochemistry. The author has an hindex of 64, co-authored 234 publications receiving 18963 citations. Previous affiliations of Daniel Bélanger include École polytechnique de l'université de Nantes.


Papers
More filters
Journal ArticleDOI
TL;DR: The charge storage mechanism in MnO2 electrode, used in aqueous electrolyte, was investigated by cyclic voltammetry and X-ray photoelectron spectroscopy as discussed by the authors.
Abstract: The charge storage mechanism in MnO2 electrode, used in aqueous electrolyte, was investigated by cyclic voltammetry and X-ray photoelectron spectroscopy. Thin MnO2 films deposited on a platinum substrate and thick MnO2 composite electrodes were used. First, the cyclic voltammetry data established that only a thin layer of MnO2 is involved in the redox process and electrochemically active. Second, the X-ray photoelectron spectroscopy data revealed that the manganese oxidation state was varying from III to IV for the reduced and oxidized forms of thin film electrodes, respectively, during the charge/discharge process. The X-ray photoelectron spectroscopy data also show that Na+ cations from the electrolyte were involved in the charge storage process of MnO2 thin film electrodes. However, the Na/Mn ratio for the reduced electrode was much lower than what was anticipated for charge compensation dominated by Na+, thus suggesting the involvement of protons in the pseudofaradaic mechanism. An important finding o...

2,404 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate why it is inappropriate to describe nickel oxide or hydroxide and cobalt oxide/hydroxide as pseudocapacitive electrode materials, and demonstrate the difference between these two classes of materials.
Abstract: There are an increasing number of studies regarding active electrode materials that undergo faradaic reactions but are used for electrochemical capacitor applications. Unfortunately, some of these materials are described as “pseudocapacitive” materials despite the fact that their electrochemical signature (e.g., cyclic voltammogram and charge/discharge curve) is analogous to that of a “battery” material, as commonly observed for Ni(OH)2 and cobalt oxides in KOH electrolyte. Conversely, true pseudocapacitive electrode materials such as MnO2 display electrochemical behavior typical of that observed for a capacitive carbon electrode. The difference between these two classes of materials will be explained, and we demonstrate why it is inappropriate to describe nickel oxide or hydroxide and cobalt oxide/hydroxide as pseudocapacitive electrode materials. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0201505jes] All rights reserved.

1,957 citations

Journal ArticleDOI
TL;DR: In this paper, the α-MnO2 powder was synthesized by a simple coprecipitation technique and tested as active electrode material for an electrochemical supercapacitor, showing that an average capacitance of 166 F/g can be reproducibly obtained within a voltage range −0.4/+0.5 V vs Hg/Hg2SO4 using a sweep rate of 2 mV/s.
Abstract: α-MnO2 was synthesized by a very simple coprecipitation technique and tested as active electrode material for an electrochemical supercapacitor. The powder presents a poorly crystallized cryptomelane phase with a chemical composition of K0.05MnO2H0.10·0.15H2O. Different aqueous electrolytes were tested including 0.1 M Na2SO4, 0.5 M K2HPO4/KH2PO4 buffer solution, 0.3 M H2SO4, and 1 M NaOH, but interesting pseudocapacitance behavior was only observed in the case of 0.1 M Na2SO4. Further testing using this electrolyte showed that an average capacitance of 166 F/g can be reproducibly obtained within a voltage range −0.4/+0.5 V vs Hg/Hg2SO4 using a sweep rate of 2 mV/s. This interesting value is mainly due to the chimisorption of Na+ ions and/or protons at the surface of the α-MnO2 electrode. Nearly all the Mn surface atoms are involved in the pseudocapacitive process. Therefore, the high specific capacitance seems to be related to the high surface area of the MnO2 powder rather than intercalation of Na+ ions ...

912 citations

Journal ArticleDOI
TL;DR: This critical review describes the methods that are used for electrografting, their mechanism, the formation and growth of the layers as well as their applications.
Abstract: Electrografting refers to the electrochemical reaction that permits organic layers to be attached to solid conducting substrates. This definition can be extended to reactions involving an electron transfer between the substrate to be modified and the reagent, but also to examples where a reducing or oxidizing reagent is added to produce the reactive species. These methods are interesting as they provide a real bond between the surface and the organic layer. Electrografting applies to a variety of substrates including carbon, metals and their oxides, but also dielectrics such as polymers. Since the 1980s several methods have been developed, either by reduction or oxidation, and some of them have reached an industrial stage. This critical review describes the methods that are used for electrografting, their mechanism, the formation and growth of the layers as well as their applications (742 references).

834 citations

Journal ArticleDOI
TL;DR: The capacitance of the crystallized materials is clearly dependent upon the crystalline structure, especially with the size of the tunnels able to provide limited cations intercalation as discussed by the authors.
Abstract: Manganese dioxide compounds with various structures were synthesized and tested as "bulk" composite electrodes for electrochemical capacitors. The capacitance of the set of MnO 2 compounds having Brunauer-Emmett-Teller (BET) surface areas larger than 125 in 2 g -1 reached a maximum value of about 150 F g -1 . The capacitance of all amorphous compounds (except one) is due to faradaic processes localized at the surface and subsurface regions of the electrode. Further increasing the surface area does not provide additional capacitance. The capacitance of the crystallized materials is clearly dependent upon the crystalline structure, especially with the size of the tunnels able to provide limited cations intercalation. Thus, the 2D structure of birnessite materials gives an advantage to obtain relatively high capacitance values (110 F g -1 ) considering their moderate BET surface area (17 m 2 g -1 ). ID tunnel structure such as γ or β-MnO 2 is characterized by only a pseudofaradic surface capacitance and therefore relies on the BET surface area of the crystalline materials. 3D tunnel structure such as λ-MnO 2 shows some intermediate behavior between bimessite and ID tunnel structures.

623 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Abstract: In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

7,642 citations

Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

5,486 citations

Journal ArticleDOI
TL;DR: In this article, the pseudocapacitance properties of transition metal oxides have been investigated and a review of the most relevant pseudo-capacitive materials in aqueous and non-aqueous electrolytes is presented.
Abstract: Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge–discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.

3,930 citations

Journal ArticleDOI
TL;DR: Fluorene-Based Copolymers ContainingPhosphorescent Complexes and Carbazole-Based Conjugated Polymers R5.1.3.
Abstract: -phenylenevinylene)s L4. Fluorene-Based Conjugated Polymers L4.1. Fluorene-Based Copolymers ContainingElectron-Rich MoietiesM4.2. Fluorene-Based Copolymers ContainingElectron-Deficient MoietiesN4.3. Fluorene-Based Copolymers ContainingPhosphorescent ComplexesQ5. Carbazole-Based Conjugated Polymers R5.1. Poly(2,7-carbazole)-Based Polymers R5.2. Indolo[3,2-

3,686 citations