scispace - formally typeset
Search or ask a question
Author

Daniel Carney

Bio: Daniel Carney is an academic researcher from Fermilab. The author has contributed to research in topics: Physics & Dark matter. The author has an hindex of 15, co-authored 34 publications receiving 688 citations. Previous affiliations of Daniel Carney include University of British Columbia & Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a broad overview of low-energy quantum gravity models is given, using some matter-wave and optomechanical systems to illustrate the predictions of a variety of models of low energy quantum gravity.
Abstract: Recent advances in cooling, control, and measurement of mechanical systems in the quantum regime have opened the possibility of the first direct observation of quantum gravity, at scales achievable in experiments. This paper gives a broad overview of this idea, using some matter-wave and optomechanical systems to illustrate the predictions of a variety of models of low-energy quantum gravity. We first review the treatment of perturbatively quantized general relativity as an effective quantum field theory, and consider the particular challenges of observing quantum effects in this framework. We then move on to a variety of alternative models, such as those in which gravity is classical, emergent, or responsible for a breakdown of quantum mechanics.

158 citations

Journal ArticleDOI
TL;DR: The information-theoretic properties of low-energy photons and gravitons in the S matrix are discussed and the entanglement entropy of the soft bosons is computed and it is shown that it is infrared-finite when the leading divergences are resummed in the manner of Bloch and Nordsieck.
Abstract: We discuss information-theoretic properties of low-energy photons and gravitons in the S matrix. Given an incoming n-particle momentum eigenstate, we demonstrate that unobserved soft photons decohere nearly all outgoing momentum superpositions of charged particles, while the universality of gravity implies that soft gravitons decohere nearly all outgoing momentum superpositions of all the hard particles. Using this decoherence, we compute the entanglement entropy of the soft bosons and show that it is infrared-finite when the leading divergences are resummed in the manner of Bloch and Nordsieck.

86 citations

Journal ArticleDOI
18 Jan 2021
TL;DR: In this article, the authors outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.
Abstract: Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this overview paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.

80 citations

Journal ArticleDOI
TL;DR: Evidence is provided of the existence of a nematic-nematic tricritical point in thermotropic liquid crystals and order parameter relaxation rates exhibit temperature dependences consistent with Landau-de Gennes mean field theory.
Abstract: Dynamic light scattering from orientational order fluctuations in a liquid crystalline tetrapode reveals successive, weakly first-order isotropic to uniaxial and uniaxial to biaxial nematic phase transitions. The order parameter relaxation rates exhibit temperature dependences consistent with Landau-de Gennes mean field theory. Combined with previous evidence of a second-order uniaxial-biaxial transition in a closely related tetrapode, the present study supports the existence of a nematic-nematic tricritical point in thermotropic liquid crystals.

72 citations

Journal ArticleDOI
TL;DR: These results provide sensitivity to certain classes of composite dark matter models that substantially exceeds existing searches, including those employing kilogram- or ton-scale targets, and can enable directionally sensitive searches for a broad class of previously inaccessible heavy dark matter candidates.
Abstract: Results are reported from a search for a class of composite dark matter models with feeble long-range interactions with normal matter. We search for impulses arising from passing dark matter particles by monitoring the mechanical motion of an optically levitated nanogram mass over the course of several days. Assuming such particles constitute the dominant component of dark matter, this search places upper limits on their interaction with neutrons of ${\ensuremath{\alpha}}_{n}\ensuremath{\le}1.2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$ at 95% confidence for dark matter masses between 1 and 10 TeV and mediator masses ${m}_{\ensuremath{\phi}}\ensuremath{\le}0.1\text{ }\text{ }\mathrm{eV}$. Because of the large enhancement of the cross section for dark matter to coherently scatter from a nanogram mass ($\ensuremath{\sim}{10}^{29}$ times that for a single neutron) and the ability to detect momentum transfers as small as $\ensuremath{\sim}200\text{ }\text{ }\mathrm{MeV}/\mathrm{c}$, these results provide sensitivity to certain classes of composite dark matter models that substantially exceeds existing searches, including those employing kilogram- or ton-scale targets. Extensions of these techniques can enable directionally sensitive searches for a broad class of previously inaccessible heavy dark matter candidates.

66 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
01 Dec 1949-Nature
TL;DR: Wentzel and Jauch as discussed by the authors described the symmetrization of the energy momentum tensor according to the Belinfante Quantum Theory of Fields (BQF).
Abstract: To say that this is the best book on the quantum theory of fields is no praise, since to my knowledge it is the only book on this subject But it is a very good and most useful book The original was written in German and appeared in 1942 This is a translation with some minor changes A few remarks have been added, concerning meson theory and nuclear forces, also footnotes referring to modern work in this field, and finally an appendix on the symmetrization of the energy momentum tensor according to Belinfante Quantum Theory of Fields Prof Gregor Wentzel Translated from the German by Charlotte Houtermans and J M Jauch Pp ix + 224, (New York and London: Interscience Publishers, Inc, 1949) 36s

2,935 citations

Journal ArticleDOI
TL;DR: In this article, the authors review early universe sources that can lead to cosmological backgrounds of GWs and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA.
Abstract: Gravitational waves (GWs) have a great potential to probe cosmology. We review early universe sources that can lead to cosmological backgrounds of GWs. We begin by presenting proper definitions of GWs in flat space-time and in a cosmological setting (section 2). Following, we discuss the reasons why early universe GW backgrounds are of a stochastic nature, and describe the general properties of a stochastic background (section 3). We recap current observational constraints on stochastic backgrounds, and discuss the basic characteristics of present and future GW detectors, including advanced LIGO, advanced Virgo, the Einstein telescope, KAGRA, and LISA (section 4). We then review in detail early universe GW generation mechanisms, as well as the properties of the GW backgrounds they give rise to. We classify the backgrounds in five categories: GWs from quantum vacuum fluctuations during standard slow-roll inflation (section 5), GWs from processes that operate within extensions of the standard inflationary paradigm (section 6), GWs from post-inflationary preheating and related non-perturbative phenomena (section 7), GWs from first order phase transitions related or not to the electroweak symmetry breaking (section 8), and GWs from general topological defects, and from cosmic strings in particular (section 9). The phenomenology of these early universe processes is extremely rich, and some of the GW backgrounds they generate can be within the reach of near-future GW detectors. A future detection of any of these backgrounds will provide crucial information on the underlying high energy theory describing the early universe, probing energy scales well beyond the reach of particle accelerators.

643 citations

Posted Content
TL;DR: A transcript of a course given by Strominger at Harvard in spring semester 2016 as discussed by the authors contains a pedagogical overview of recent developments connecting the subjects of soft theorems, the memory effect and asymptotic symmetries in four-dimensional QED, nonabelian gauge theory and gravity with applications to black holes.
Abstract: This is a redacted transcript of a course given by the author at Harvard in spring semester 2016. It contains a pedagogical overview of recent developments connecting the subjects of soft theorems, the memory effect and asymptotic symmetries in four-dimensional QED, nonabelian gauge theory and gravity with applications to black holes. The lectures may be viewed online at this https URL. Please send typos or corrections to strominger@physics.this http URL.

599 citations

01 Jul 2013
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Abstract: Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1, 2, 3, 4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

589 citations