scispace - formally typeset
Search or ask a question
Author

Daniel Costinett

Bio: Daniel Costinett is an academic researcher from University of Tennessee. The author has contributed to research in topics: Inverter & Wireless power transfer. The author has an hindex of 27, co-authored 165 publications receiving 3342 citations. Previous affiliations of Daniel Costinett include National Transportation Research Center & University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the characteristics and commercial status of both vertical and lateral GaN power devices are reviewed, providing the background necessary to understand the significance of these recent developments and the challenges encountered in GaN-based converter design, such as the consequences of faster switching on gate driver and board layout.
Abstract: Gallium nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This paper reviews the characteristics and commercial status of both vertical and lateral GaN power devices, providing the background necessary to understand the significance of these recent developments. In addition, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic $R_{\mathrm {{ds}},\mathrm {{on}}}$ , breakdown mechanisms, thermal design, device availability, and reliability qualification. This review will help prepare the reader to effectively design GaN-based converters, as these devices become increasingly available on a commercial scale.

769 citations

Journal ArticleDOI
02 Apr 2013
TL;DR: This paper discusses far-field wireless powering for low-power wireless sensors, with applications to sensing in environments where it is difficult or impossible to change batteries and where the exact position of the sensors might not be known.
Abstract: This paper discusses far-field wireless powering for low-power wireless sensors, with applications to sensing in environments where it is difficult or impossible to change batteries and where the exact position of the sensors might not be known. With expected radio-frequency (RF) power densities in the 20-200- μW/cm2 range, and desired small sensor overall size, low-power nondirective wireless powering is appropriate for sensors that transmit data at low duty cycles. The sensor platform is powered through an antenna which receives incident electromagnetic waves in the gigahertz frequency range, couples the energy to a rectifier circuit which charges a storage device (e.g., thin-film battery) through an efficient power management circuit, and the entire platform, including sensors and a low-power wireless transmitter, and is controlled through a low-power microcontroller. For low incident power density levels, codesign of the RF powering and the power management circuits is required for optimal performance. Results for hybrid and monolithic implementations of the power management circuitry are presented with integrated antenna rectifiers operating in the 1.96-GHz cellular and in 2.4-GHz industrial-scientific-medical (ISM) bands.

281 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs.
Abstract: This paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 °C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 °C. The experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermal model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.

206 citations

Journal ArticleDOI
TL;DR: A control scheme is developed to maximize efficiency over a wide range of loads for a dual active bridge converter which considers both the converter conversion ratio and switching dead times in order to maintain high efficiency in the presence of varying loads.
Abstract: A control scheme is developed to maximize efficiency over a wide range of loads for a dual active bridge converter. A simple control circuit using only phase-shift modulation is proposed which considers both the converter conversion ratio and switching dead times in order to maintain high efficiency in the presence of varying loads. To demonstrate feasibility of the proposed control method, experimental results are presented for a 150-to-12 V, 120-W, 1-MHz prototype converter which has 97.4% peak efficiency and maintains greater than 90% efficiency over a load range between 20 and 120 W.

159 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the factors that limit the SiC switching performance from both the motor side and inverter side, including the load characteristics of induction motor and power cable, two more phase legs for the three phase PWM inverter in comparison with the DPT, and the parasitic capacitive coupling effect between power devices and heat sink.
Abstract: Double pulse test (DPT) is a widely accepted method to evaluate the switching characteristics of semiconductor switches, including SiC devices However, the observed switching performance of SiC devices in a PWM inverter for induction motor drives is almost always worse than the DPT characterization, with slower switching speed, more switching losses, and more serious parasitic ringing This paper systematically investigates the factors that limit the SiC switching performance from both the motor side and inverter side, including the load characteristics of induction motor and power cable, two more phase legs for the three-phase PWM inverter in comparison with the DPT, and the parasitic capacitive coupling effect between power devices and heat sink Based on a three-phase PWM inverter with 1200 V SiC MOSFETs, test results show that the induction motor, especially with a relatively long power cable, will significantly impact the switching performance, leading to a switching time increase by a factor of 2, switching loss increase up to 30% in comparison with that yielded from DPT, and serious parasitic ringing with 15 μs duration, which is more than 50 times of the corresponding switching time In addition, the interactions among the three phase legs cannot be ignored unless the decoupling capacitors are mounted close to each phase leg to support the dc bus voltage during switching transients Also, the coupling capacitance due to the heat sink equivalently increases the junction capacitance of power devices; however, its influence on the switching behavior in the motor drives is small considering the relatively large capacitance of the motor load

139 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications, and explores various key design issues according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks.
Abstract: Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs) First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs We also explore various key design issues in the development of RF-EHNs according to the network types, ie, single-hop networks, multiantenna networks, relay networks, and cognitive radio networks Finally, we envision some open research directions

2,352 citations

Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

01 Jan 2016
TL;DR: The design of analog cmos integrated circuits is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading design of analog cmos integrated circuits. Maybe you have knowledge that, people have look hundreds times for their chosen books like this design of analog cmos integrated circuits, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some harmful virus inside their computer. design of analog cmos integrated circuits is available in our book collection an online access to it is set as public so you can download it instantly. Our digital library spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the design of analog cmos integrated circuits is universally compatible with any devices to read.

1,038 citations

Journal ArticleDOI
TL;DR: In this article, the characteristics and commercial status of both vertical and lateral GaN power devices are reviewed, providing the background necessary to understand the significance of these recent developments and the challenges encountered in GaN-based converter design, such as the consequences of faster switching on gate driver and board layout.
Abstract: Gallium nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This paper reviews the characteristics and commercial status of both vertical and lateral GaN power devices, providing the background necessary to understand the significance of these recent developments. In addition, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic $R_{\mathrm {{ds}},\mathrm {{on}}}$ , breakdown mechanisms, thermal design, device availability, and reliability qualification. This review will help prepare the reader to effectively design GaN-based converters, as these devices become increasingly available on a commercial scale.

769 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications, with regard to network applications and discuss open issues and challenges in implementing wireless charging technologies.
Abstract: Wireless charging is a technology of transmitting power through an air gap to electrical devices for the purpose of energy replenishment. The recent progress in wireless charging techniques and development of commercial products have provided a promising alternative way to address the energy bottleneck of conventionally portable battery-powered devices. However, the incorporation of wireless charging into the existing wireless communication systems also brings along a series of challenging issues with regard to implementation, scheduling, and power management. In this paper, we present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications. In particular, with regard to network applications, we review the static charger scheduling strategies, mobile charger dispatch strategies and wireless charger deployment strategies. Additionally, we discuss open issues and challenges in implementing wireless charging technologies. Finally, we envision some practical future network applications of wireless charging.

718 citations