scispace - formally typeset
Search or ask a question
Author

Daniel D. Frey

Bio: Daniel D. Frey is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Engineering design process & Systems design. The author has an hindex of 22, co-authored 95 publications receiving 4536 citations. Previous affiliations of Daniel D. Frey include Franklin W. Olin College of Engineering & Western Atlas.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the purpose of engineering education is to train engineers who can design, and that design thinking is difficult to learn and difficult to teach, and the most popular pedagogical model for teaching design is Project-Based Learning (PBL).
Abstract: This paper is based on the premises that the purpose of engineering education is to graduate engineers who can design, and that design thinking is complex. The paper begins by briefly reviewing the history and role of design in the engineering curriculum. Several dimensions of design thinking are then detailed, explaining why design is hard to learn and harder still to teach, and outlining the research available on how well design thinking skills are learned. The currently most-favored pedagogical model for teaching design, project-based learning (PBL), is explored next, along with available assessment data on its success. Two contexts for PBL are emphasized: first-year cornerstone courses and globally dispersed PBL courses. Finally, the paper lists some of the open research questions that must be answered to identify the best pedagogical practices of improving design learning, after which it closes by making recommendations for research aimed at enhancing design learning.

2,159 citations

Journal ArticleDOI
TL;DR: In this paper, the purpose of engineering education is to train engineers who can design, and that design thinking is difficult to learn and difficult to teach, and the most popular pedagogical model for teaching design is Project-Based Learning (PBL).
Abstract: This paper is based on the premises that the purpose of engineering education is to graduate engineers who can design, and that design thinking is complex. The paper begins by briefly reviewing the history and role of design in the engineering curriculum. Several dimensions of design thinking are then detailed, explaining why design is hard to learn and harder still to teach, and outlining the research available on how well design thinking skills are learned. The currently most-favored pedagogical model for teaching design, project-based learning (PBL), is explored next, along with available assessment data on its success. Two contexts for PBL are emphasized: first-year cornerstone courses and globally dispersed PBL courses. Finally, the paper lists some of the open research questions that must be answered to identify the best pedagogical practices of improving design learning, after which it closes by making recommendations for research aimed at enhancing design learning.

1,055 citations

Journal ArticleDOI
TL;DR: In this paper, the role of one-at-a-time experimentation in parameter design of engineering systems is explored and a map of expected gains in performance is provided as a function of the degree of pure experimental error and the strength of interactions among experimental factors.
Abstract: This paper explores the role of one-at-a-time experimentation in parameter design of engineering systems. The focus is on degree of improvement achieved rather than on efficiency in estimating model parameters. The performance of adaptive one-at-a-time plans is compared with the performance of orthogonal arrays through computer simulations based on data from 66 response variables in 27 full factorial experiments described in science and engineering journals and textbooks. From the simulation results, a map of the expected gains in performance is provided as a function of the degree of pure experimental error and the strength of interactions among experimental factors. When experimental error is small (less than a quarter of the factor effects) or the interactions among control factors are large (more than one-quarter of all factor effects), an adaptive one-at-a-time strategy tends to achieve greater gains than those provided by orthogonal arrays.

150 citations

Journal ArticleDOI
TL;DR: In this article, the challenges and opportunities in validation of design methods are illustrated by drawing an analogy to medical research and development, including specific validation practices such as clinical studies and use of models of human disease.
Abstract: This paper discusses the validation of design methods. The challenges and opportunities in validation are illustrated by drawing an analogy to medical research and development. Specific validation practices such as clinical studies and use of models of human disease are discussed, including specific ways to adapt them to engineering design. The implications are explored for three active areas of design research: robust design, axiomatic design, and design decision making. It is argued that medical research and development has highly-developed, well-documented validation methods and that many specific practices such as natural experiments and model-based evaluations can profitably be adapted for use in engineering design research.

125 citations

Journal ArticleDOI
TL;DR: A meta-analysis of 113 data sets from published factorial experiments shows that a preponderance of active two-factor interaction effects are synergistic, meaning that when main effects are used to increase the system response, the interaction provides an additional increase and that when the interactions generally counteract the main effects.
Abstract: This article documents a meta-analysis of 113 data sets from published factorial experiments. The study quantifies regularities observed among factor effects and multifactor interactions. Such regularities are known to be critical to efficient planning and analysis of experiments and to robust design of engineering systems. Three previously observed properties are analyzed: effect sparsity, hierarchy, and heredity. A new regularity is introduced and shown to be statistically significant. It is shown that a preponderance of active two-factor interaction effects are synergistic, meaning that when main effects are used to increase the system response, the interaction provides an additional increase and that when main effects are used to decrease the response, the interactions generally counteract the main effects. © 2006 Wiley Periodicals, Inc. Complexity 11: 32– 45, 2006

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Posted Content
TL;DR: The Oxford Handbook of Innovation as mentioned in this paper provides a comprehensive and holistic understanding of the phenomenon of innovation, with a focus on firms and networks, and the consequences of innovation with respect to economic growth, international competitiveness, and employment.
Abstract: This handbook looks to provide academics and students with a comprehensive and holistic understanding of the phenomenon of innovation. Innovation spans a number of fields within the social sciences and humanities: Management, Economics, Geography, Sociology, Politics, Psychology, and History. Consequently, the rapidly increasing body of literature on innovation is characterized by a multitude of perspectives based on, or cutting across, existing disciplines and specializations. Scholars of innovation can come from such diverse starting points that much of this literature can be missed, and so constructive dialogues missed. The editors of The Oxford Handbook of Innovation have carefully selected and designed twenty-one contributions from leading academic experts within their particular field, each focusing on a specific aspect of innovation. These have been organized into four main sections, the first of which looks at the creation of innovations, with particular focus on firms and networks. Section Two provides an account of the wider systematic setting influencing innovation and the role of institutions and organizations in this context. Section Three explores some of the diversity in the working of innovation over time and across different sectors of the economy, and Section Four focuses on the consequences of innovation with respect to economic growth, international competitiveness, and employment. An introductory overview, concluding remarks, and guide to further reading for each chapter, make this handbook a key introduction and vital reference work for researchers, academics, and advanced students of innovation. Contributors to this volume - Jan Fagerberg, University of Oslo William Lazonick, INSEAD Walter W. Powell, Stanford University Keith Pavitt, SPRU Alice Lam, Brunel University Keith Smith, INTECH Charles Edquist, Linkoping David Mowery, University of California, Berkeley Mary O'Sullivan, INSEAD Ove Granstrand, Chalmers Bjorn Asheim, University of Lund Rajneesh Narula, Copenhagen Business School Antonello Zanfei, Urbino Kristine Bruland, University of Oslo Franco Malerba, University of Bocconi Nick Von Tunzelmann, SPRU Ian Miles, University of Manchester Bronwyn Hall, University of California, Berkeley Bart Verspagen , ECIS Francisco Louca, ISEG Manuel M. Godinho, ISEG Richard R. Nelson, Mario Pianta, Urbino Bengt-Ake Lundvall, Aalborg

3,040 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations