scispace - formally typeset
Search or ask a question
Author

Daniel E. Worrall

Other affiliations: University College London
Bio: Daniel E. Worrall is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Convolutional neural network & Deep learning. The author has an hindex of 16, co-authored 33 publications receiving 1542 citations. Previous affiliations of Daniel E. Worrall include University College London.

Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: H-Nets are presented, a CNN exhibiting equivariance to patch-wise translation and 360-rotation, and it is demonstrated that their layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization.
Abstract: Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch. H-Nets use a rich, parameter-efficient and fixed computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.

614 citations

Proceedings Article
01 Jan 2020
TL;DR: The SE(3)-Transformer as mentioned in this paper is a variant of the self-attention module for 3D point clouds and graphs, which is equivariant under continuous 3D roto-translations.
Abstract: We introduce the SE(3)-Transformer, a variant of the self-attention module for 3D point clouds and graphs, which is equivariant under continuous 3D roto-translations. Equivariance is important to ensure stable and predictable performance in the presence of nuisance transformations of the data input. A positive corollary of equivariance is increased weight-tying within the model. The SE(3)-Transformer leverages the benefits of self-attention to operate on large point clouds and graphs with varying number of points, while guaranteeing SE(3)-equivariance for robustness. We evaluate our model on a toy N-body particle simulation dataset, showcasing the robustness of the predictions under rotations of the input. We further achieve competitive performance on two real-world datasets, ScanObjectNN and QM9. In all cases, our model outperforms a strong, non-equivariant attention baseline and an equivariant model without attention.

295 citations

Posted Content
TL;DR: Harmonic Networks as mentioned in this paper replace regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch, which can encode complicated rotational invariants.
Abstract: Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch. H-Nets use a rich, parameter-efficient and low computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.

292 citations

Book ChapterDOI
10 Sep 2017
TL;DR: In this paper, a per-patch heteroscedastic noise model and parameter uncertainty through approximate Bayesian inference in the form of variational dropout are proposed for 3D super-resolution with convolutional neural networks.
Abstract: In this work, we investigate the value of uncertainty modelling in 3D super-resolution with convolutional neural networks (CNNs). Deep learning has shown success in a plethora of medical image transformation problems, such as super-resolution (SR) and image synthesis. However, the highly ill-posed nature of such problems results in inevitable ambiguity in the learning of networks. We propose to account for intrinsic uncertainty through a per-patch heteroscedastic noise model and for parameter uncertainty through approximate Bayesian inference in the form of variational dropout. We show that the combined benefits of both lead to the state-of-the-art performance SR of diffusion MR brain images in terms of errors compared to ground truth. We further show that the reduced error scores produce tangible benefits in downstream tractography. In addition, the probabilistic nature of the methods naturally confers a mechanism to quantify uncertainty over the super-resolved output. We demonstrate through experiments on both healthy and pathological brains the potential utility of such an uncertainty measure in the risk assessment of the super-resolved images for subsequent clinical use.

135 citations

Book ChapterDOI
08 Sep 2018
TL;DR: In this article, an idealized model is proposed to preserve a meaningful representation of the voxelized object, while explaining the pose-difference between the two inputs, and an equivariant representation vector has two components: the invariant identity part and a discernable encoding of the transformation.
Abstract: 3D Convolutional Neural Networks are sensitive to transformations applied to their input. This is a problem because a voxelized version of a 3D object, and its rotated clone, will look unrelated to each other after passing through to the last layer of a network. Instead, an idealized model would preserve a meaningful representation of the voxelized object, while explaining the pose-difference between the two inputs. An equivariant representation vector has two components: the invariant identity part, and a discernable encoding of the transformation. Models that can’t explain pose-differences risk “diluting” the representation, in pursuit of optimizing a classification or regression loss function.

131 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.
Abstract: Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.

8,730 citations

Proceedings ArticleDOI
17 Mar 2017
TL;DR: Deformable convolutional networks as discussed by the authors augment the spatial sampling locations in the modules with additional offsets and learn the offsets from the target tasks, without additional supervision, which can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard backpropagation.
Abstract: Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in their building modules. In this work, we introduce two new modules to enhance the transformation modeling capability of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from the target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the performance of our approach. For the first time, we show that learning dense spatial transformation in deep CNNs is effective for sophisticated vision tasks such as object detection and semantic segmentation. The code is released at https://github.com/msracver/Deformable-ConvNets.

3,318 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Abstract: Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.

1,897 citations

Posted Content
TL;DR: This work introduces two new modules to enhance the transformation modeling capability of CNNs, namely, deformable convolution and deformable RoI pooling, based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from the target tasks, without additional supervision.
Abstract: Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation. The code would be released.

1,661 citations