scispace - formally typeset
Search or ask a question
Author

Daniel G. Debouck

Bio: Daniel G. Debouck is an academic researcher from International Center for Tropical Agriculture. The author has contributed to research in topics: Phaseolus & Germplasm. The author has an hindex of 24, co-authored 89 publications receiving 3156 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Multivariate statistical analyses of morphological, agronomic, and molecular data, as well as other available information on Latin American landraces representing various geographical and ecological regions of their primary centers of domestications in the Americas, reveal the existence of two major groups of germplasm: Middle American and Andean South American, which could be further divided into six races.
Abstract: Evidence for genetic diversity in cultivated common bean (Phaseolus vulgaris) is reviewed. Multivariate statistical analyses of morphological, agronomic, and molecular data, as well as other available information on Latin American landraces representing various geographical and ecological regions of their primary centers of domestications in the Americas, reveal the existence of two major groups of germplasm: Middle American and Andean South American, which could be further divided into six races. Three races originated in Middle America (races Durango, Jalisco, and Mesoamerica) and three in Andean South America (races Chile, Nueva Granada, and Peru). Their distinctive characteristics and their relationships with previously reported gene pools are discussed.

711 citations

01 Jan 2016
TL;DR: Amplification and sequencing of members of the multigene family coding for phaseolin provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multi-gene family in this species.
Abstract: Common bean (Phaseolus vulgaris) consists of two major geographic gene pools, one distributed in Mexico, Central America, and Colombia and the other in the southern Andes (southern Peru, Bolivia, and Argentina). Amplification and sequencing of members of the multigene family coding for phaseolin, the major seed storage protein of the common bean, provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multigene family in this species. The presumed ancestral phaseolin sequences, without tandem repeats, were found in recently discovered but nearly extinct wild common bean populations of Ecuador and northern Peru that are intermediate between the two major gene pools of the species based on geographical and molecular arguments. Our results illustrate the useful- ness of tandem direct repeats in establishing the polarity of DNA sequence divergence and therefore in proposing phylog- enies.

171 citations

Journal ArticleDOI
TL;DR: It appears that salt tolerance in P. filiformis is associated with Na+ exclusion and organ Na+ compartmentation in roots and stems as well as sustained K+ concentration in leaves and better stomatal control through osmotic adjustment.

165 citations

Journal ArticleDOI
TL;DR: This study shows the benefit for more efficient germplasm conservation which can be derived from the dynamic interplay between field explorations (and other conservation operations) and molecular analyses to determine genetic distances and diversities.
Abstract: Our goal was to investigate in more detail wild and cultivated common bean (Phaseolus vulgaris) accessions from northwestern South America (Colombia, Ecuador, and northern Peru) because prior research had shown this region to be the meeting place of the two major gene pools (Middle American and Andean) of common bean. Explorations were conducted in these countries to collect additional materials not represented in germplasm collections. It was possible to identify wild common bean populations in Ecuador and northern Peru, where they had never been described before. In addition, we were able to extend the distribution of wild common bean in Colombia beyond what was known prior to this study. In all areas, the wild common bean habitat had suffered severely from destruction of natural vegetation. In Colombia, wild common beans were found on the Eastern slope of the Andes (in continuation of its distribution in Venezuela), whereas in Ecuador and northern Peru they were found on the western slope of this mountain range. This geographic distribution was correlated with an ecological distribution in relatively dry environments with intermediate temperatures (known as “dry mountain forest”). Isozyme andphaseolin seed protein analyses of the northern Peruvian and Ecuadoran wild populations showed that they were intermediate between the Middle American and Andean gene pools of the species. Phaseolin analyses conducted on landraces of the Upper Magdalena Valley in Colombia showed that Andean domesticates were grown at a higher altitude than Middle American domesticates suggesting that the former are adapted to cooler temperatures. Our observations and results have the following consequences for the understanding and conservation of genetic diversity in common bean and other crops: 1) Our understanding of the distribution of the wild relative of common bean (and other crops) is imperfect and further explorations are needed to more precisely identify and rescue wild ancestral populations; 2) For crops for which the wild ancestor has not yet been identified, it may be worthwhile to conduct additional explorations in conjunction with genetic diversity studies at the molecular level to guide the explorations; 3) Our study shows the benefit for more efficient germplasm conservation which can be derived from the dynamic interplay between field explorations (and other conservation operations) and molecular analyses to determine genetic distances and diversities; 4) The intermediate materials identified in northern Peru and Ecuador may have basic importance to understand the origin of the common bean and an applied role as a bridge between the Middle American and Andean gene pools; and 5) The differential adaptation to temperature of the two major cultivated gene pools may help breeders select genotypes based at least partially on their evolutionary origin.

160 citations

Journal ArticleDOI
20 Oct 2010-PLOS ONE
TL;DR: A method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives of crops as a means to guide efficient and effective collecting activities, and results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps of the world's plant genetic resources.
Abstract: Background: The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings: The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap ‘‘hotspots’’, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance: Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world’s plant genetic resources.

158 citations


Cited by
More filters
Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: In some areas of Latin America, inoculation which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains such as R. etli and R. giardinii as discussed by the authors.
Abstract: Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.

1,641 citations

Journal ArticleDOI
TL;DR: An international consortium called `Phaseomics' is formed to establish the necessary framework of knowledge and materials that will result in disease-resistant, stress-tolerant, high-quality protein and high-yielding beans, which will be instrumental in improving living conditions in deprived regions of Africa and the Americas.
Abstract: Globally, 800 million people are malnourished. Heavily subsidised farmers in rich countries produce sufficient surplus food to feed the hungry, but not at a price the poor can afford. Even donating the rich world's surplus to the poor would not solve the problem. Most poor people earn their living from agriculture, so a deluge of free food would destroy their livelihoods. Thus, the only answer to world hunger is to safeguard and improve the productivity of farmers in poor countries. Diets of subsistence level farmers in Africa and Latin America often contain sufficient carbohydrates (through cassava, corn/maize, rice, wheat, etc.), but are poor in proteins. Dietary proteins can take the form of scarce animal products (eggs, milk, meat, etc.), but are usually derived from legumes (plants of the bean and pea family). Legumes are vital in agriculture as they form associations with bacteria that `fix-nitrogen' from the air. Effectively this amounts to internal fertilisation and is the main reason that legumes are richer in proteins than all other plants. Thousands of legume species exist but more common beans (Phaseolus vulgaris L.) are eaten than any other. In some countries such as Mexico and Brazil, beans are the primary source of protein in human diets. As half the grain legumes consumed worldwide are common beans, they represent the species of choice for the study of grain legume nutrition. Unfortunately, the yields of common beans are low even by the standards of legumes, and the quality of their seed proteins is sub-optimal. Most probably this results from millennia of selection for stable rather than high yield, and as such, is a problem that can be redressed by modern genetic techniques. We have formed an international consortium called `Phaseomics' to establish the necessary framework of knowledge and materials that will result in disease-resistant, stress-tolerant, high-quality protein and high-yielding beans. Phaseomics will be instrumental in improving living conditions in deprived regions of Africa and the Americas. It will contribute to social equity and sustainable development and enhance inter- and intra-cultural understanding, knowledge and relationships. A major goal of Phaseomics is to generate new common bean varieties that are not only suitable for but also desired by the local farmer and consumer communities. Therefore, the socio-economic dimension of improved bean production and the analysis of factors influencing the acceptance of novel varieties will be an integral part of the proposed research (see Figure 1). Here, we give an overview of the economic and nutritional importance of common beans as a food crop. Priorities and targets of current breeding programmes are outlined, along with ongoing efforts in genomics. Recommendations for an international coordinated effort to join knowledge, facilities and expertise in a variety of scientific undertakings that will contribute to the overall goal of better beans are given. To be rapid and effective, plant breeding programmes (i.e., those that involve crossing two different `parents') rely heavily on molecular `markers'. These genetic landmarks are used to position

1,255 citations

Journal ArticleDOI
TL;DR: Crop genotypes with greater yield in infertile soils will substantially improve the productivity and sustainability of low-input agroecosystems, and in high-input agricultural systems will reduce the environmental impacts of intensive fertilisation.
Abstract: The Green Revolution boosted crop yields in developing nations by introducing dwarf genotypes of wheat and rice capable of responding to fertilisation without lodging. We now need a second Green Revolution, to improve the yield of crops grown in infertile soils by farmers with little access to fertiliser, who represent the majority of third-world farmers. Just as the Green Revolution was based on crops responsive to high soil fertility, the second Green Revolution will be based on crops tolerant of low soil fertility. Substantial genetic variation in the productivity of crops in infertile soil has been known for over a century. In recent years we have developed a better understanding of the traits responsible for this variation. Root architecture is critically important by determining soil exploration and therefore nutrient acquisition. Architectural traits under genetic control include basal-root gravitropism, adventitious-root formation and lateral branching. Architectural traits that enhance topsoil foraging are important for acquisition of phosphorus from infertile soils. Genetic variation in the length and density of root hairs is important for the acquisition of immobile nutrients such as phosphorus and potassium. Genetic variation in root cortical aerenchyma formation and secondary development (‘root etiolation’) are important in reducing the metabolic costs of root growth and soil exploration. Genetic variation in rhizosphere modification through the efflux of protons, organic acids and enzymes is important for the mobilisation of nutrients such as phosphorus and transition metals, and the avoidance of aluminum toxicity. Manipulation of ion transporters may be useful for improving the acquisition of nitrate and for enhancing salt tolerance. With the noteworthy exceptions of rhizosphere modification and ion transporters, most of these traits are under complex genetic control. Genetic variation in these traits is associated with substantial yield gains in low-fertility soils, as illustrated by the case of phosphorus efficiency in bean and soybean. In breeding crops for low-fertility soils, selection for specific root traits through direct phenotypic evaluation or molecular markers is likely to be more productive than conventional field screening. Crop genotypes with greater yield in infertile soils will substantially improve the productivity and sustainability of low-input agroecosystems, and in high-input agroecosystems will reduce the environmental impacts of intensive fertilisation. Although the development of crops with reduced fertiliser requirements has been successful in the few cases it has been attempted, the global scientific effort devoted to this enterprise is small, especially considering the magnitude of the humanitarian, environmental and economic benefits being forgone. Population growth, ongoing soil degradation and increasing costs of chemical fertiliser will make the second Green Revolution a priority for plant biology in the 21st century.

1,081 citations

Journal ArticleDOI
TL;DR: 2 independent domestications from genetic pools that diverged before human colonization are confirmed and a set of genes linked with increased leaf and seed size are identified and combined with quantitative trait locus data from Mesoamerican cultivars.
Abstract: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.

1,012 citations