scispace - formally typeset
Search or ask a question
Author

Daniel G. Gorman

Bio: Daniel G. Gorman is an academic researcher from University of Strathclyde. The author has contributed to research in topics: Finite element method & Fluid dynamics. The author has an hindex of 14, co-authored 24 publications receiving 804 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that by adding periodic forcing to a vibrationally excited energy harvesting mechanism, the power available from the device is apparently enhanced over a mechanism without periodic forcing.

256 citations

Journal ArticleDOI
TL;DR: In this article, the non-linear equations of motion of a flexible pipe conveying unsteadily flowing fluid are derived from the continuity and momentum equations of unsteady flow, and these partial differential equations are fully coupled through equilibrium of contact forces, the normal compatibility of velocity at the fluid interfaces, and the conservation of mass and momentum of the transient fluid.

97 citations

Journal ArticleDOI
TL;DR: A direct role for Egr-1 in flow-mediated induction of TF is suggested and the importance of shear stress as a modulator of vascular endothelial gene function in vivo is substantiated.
Abstract: —Hemodynamic forces such as fluid shear stress have been shown to modulate the activity of an expanding family of genes involved in vessel wall homeostasis and the pathogenesis of vascular disease. We have investigated the effect of shear stress on tissue factor (TF) gene expression in human endothelial cells (ECs) and in a rat arterial model of occlusion. As measured by reverse transcriptase polymerase chain reaction, exposure of ECs to 1.5 N/m2 shear stress resulted in a time-dependent induction of endogenous TF transcripts of over 5-fold. Transient transfection of TF promoter mutants into cultured ECs suggests the involvement of the transcription factor Egr-1 in mediating the response of the TF promoter to shear stress. To address the importance of flow induction of Egr-1 in vivo, we have established a flow-restricted rat arterial model and determined the level of expressed Egr-1 and TF at the site of restricted flow using immunohistochemistry. We report an increase in the level of Egr-1 and TF protein in ECs expressed at the site of restricted flow. Elevated expression of Egr-1 and TF is restricted to a highly localized area, as evidenced by the fact that no significant increase in level can be detected at arterial sites distal to the site of occlusion. These findings suggest a direct role for Egr-1 in flow-mediated induction of TF and further substantiate the importance of shear stress as a modulator of vascular endothelial gene function in vivo.

91 citations

Journal ArticleDOI
TL;DR: In this article, a linear analysis of the vibratory behavior of initially tensioned cylindrical shells conveying a compressible inviscid fluid is presented based on the three-dimensional nonlinear theory of elasticity and the Eulerian equations.

72 citations

Journal ArticleDOI
TL;DR: In this article, a general approach to modeling the vibration of prestressed thin cylindrical shells conveying fluid is presented, where the steady flow of fluid is described by the classical potential flow theory, and the motion of the shell is represented by Sanders' theory of thin shells.
Abstract: A general approach to modelling the vibration of prestressed thin cylindrical shells conveying fluid is presented. The steady flow of fluid is described by the classical potential flow theory, and the motion of the shell is represented by Sanders' theory of thin shells. A strain-displacement relationship is deployed to derive the geometric stiffness matrix due to the initial stresses caused by hydrostatic pressure. Hydrodynamic pressure acting on the shell is developed through dynamic interfacial coupling conditions. The resulting equations governing the motion of the shell and fluid are solved by a finite element method. This model is subsequently used to investigate the small-vibration dynamic behaviour of prestressed thin cylindrical shells conveying fluid. It is validated by comparing the computed natural frequencies, within the linear region, with existing reported experimental results. The influence of initial tension, internal pressure, fluid flow velocity and the various geometric properties is also examined.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the major efforts and findings documented in the literature can be found in this article, where a common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistably energy harvesters are described, and some remaining challenges and proposed solutions are summarized.
Abstract: The investigation of the conversion of vibrational energy into electrical power has become a major field of research. In recent years, bistable energy harvesting devices have attracted significant attention due to some of their unique features. Through a snap-through action, bistable systems transition from one stable state to the other, which could cause large amplitude motion and dramatically increase power generation. Due to their nonlinear characteristics, such devices may be effective across a broad-frequency bandwidth. Consequently, a rapid engagement of research has been undertaken to understand bistable electromechanical dynamics and to utilize the insight for the development of improved designs. This paper reviews, consolidates, and reports on the major efforts and findings documented in the literature. A common analytical framework for bistable electromechanical dynamics is presented, the principal results are provided, the wide variety of bistable energy harvesters are described, and some remaining challenges and proposed solutions are summarized.

1,158 citations

Book
19 May 2005
TL;DR: In this article, the authors present a detailed review of liquid sloshing dynamics in rigid containers, including linear forced and non-linear interaction under external and parametric excitations.
Abstract: Preface Introduction 1. Fluid field equations and modal analysis in rigid containers 2. Linear forced sloshing 3. Viscous damping and sloshing suppression devices 4. Weakly nonlinear lateral sloshing 5. Equivalent mechanical models 6. Parametric sloshing (Faraday's waves) 7. Dynamics of liquid sloshing impact 8. Linear interaction of liquid sloshing with elastic containers 9. Nonlinear interaction under external and parametric excitations 10. Interactions with support structures and tuned sloshing absorbers 11. Dynamics of rotating fluids 12. Microgravity sloshing dynamics Bibliography Index.

920 citations

Journal ArticleDOI
TL;DR: A survey of both specialized and widely expressed mechanosensitive systems suggests that physical forces provide a general means of altering protein conformation to generate signals.

726 citations

Journal ArticleDOI
18 Apr 2018-Joule
TL;DR: A comprehensive review of piezoelectric energy-harvesting techniques developed in the last decade is presented, identifying four promising applications: shoes, pacemakers, tire pressure monitoring systems, and bridge and building monitoring.

720 citations

Journal ArticleDOI
TL;DR: In this paper, a non-resonant piezomagnetoelastic energy harvester with high-energy orbits was proposed and investigated over a range of excitation frequencies.

700 citations