scispace - formally typeset
Search or ask a question
Author

Daniel Guyomar

Bio: Daniel Guyomar is an academic researcher from Institut national des sciences Appliquées de Lyon. The author has contributed to research in topics: Energy harvesting & Piezoelectricity. The author has an hindex of 52, co-authored 394 publications receiving 12243 citations. Previous affiliations of Daniel Guyomar include Lyon College & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: This technique, called synchronized switch harvesting (SSH), is derived from the synchronized switch damping (SSD), which is a nonlinear technique previously developed to address the problem of vibration damping on mechanical structures, results in a significant increase of the electromechanical conversion capability of piezoelectric materials.
Abstract: This paper presents a new technique of electrical energy generation using mechanically excited piezoelectric materials and a nonlinear process. This technique, called synchronized switch harvesting (SSH), is derived from the synchronized switch damping (SSD), which is a nonlinear technique previously developed to address the problem of vibration damping on mechanical structures. This technique results in a significant increase of the electromechanical conversion capability of piezoelectric materials. Comparatively with standard technique, the electrical harvested power may be increased above 900%. The performance of the nonlinear processing is demonstrated on structures excited at their resonance frequency as well as out of resonance.

949 citations

Journal ArticleDOI
TL;DR: In this article, a comparison between four vibration-powered generators designed to power standalone transducers is presented, based on a particular processing of the voltage delivered by the piezoelectric material, which enhances the electromechanical conversion.
Abstract: This paper presents a comparison between four vibration-powered generators designed to power standalone systems, such as wireless transducers. Ambient vibrations are converted into electrical energy using piezoelectric materials. The originality of the proposed approaches is based on a particular processing of the voltage delivered by the piezoelectric material, which enhances the electromechanical conversion. The principle of each processing circuit is detailed. Experimental results confirm the predictions given by an electromechanical model: compared to usual generators, the proposed approaches dramatically increase the power of the generators.

644 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear approach to optimize the power flow of vibration-based piezoelectric energy-harvesting devices is presented, which maximizes the mechanical to electrical energy conversion.
Abstract: This article presents a nonlinear approach to optimize the power flow of vibration-based piezoelectric energy-harvesting devices. This self-adaptive principle is based on a particular synchronization between extraction of the electric charge produced by the piezoelectric element and the system vibrations, which maximizes the mechanical to electrical energy conversion. An analytical expression of the optimal power flow is derived from a simple electromechanical model. An electronic circuit designed to perform the synchronous charge extraction is proposed. Theoretical predictions confirmed by experimental results show that the new principle increases the harvested power by 400% as compared with a quasilinear impedance adaptation optimization method.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a comprehensive model for miniature vibration-powered piezoelectric generators and analyzed modes of operation and control of a buck-boost converter for the purpose of tracking the generators optimal working points.
Abstract: This paper presents a comprehensive model for miniature vibration-powered piezoelectric generators and analyses modes of operation and control of a buck-boost converter for the purpose of tracking the generators optimal working points. The model describes the generator's power dependence with the mechanical acceleration and frequency, and helps in the definition of the load behaviour for power optimization. Electrical behaviour of the input of buck-boost converter in discontinuous current mode turns out to be in perfect agreement with the considered optimization criteria with a very simple, sensorless control. Experimental results show that the converter controlled by a very low consumption circuit effectively maximizes the power flow into a 4.8 V rechargeable battery connected to the converter output. The converter's efficiency is above 84% for input voltages between 1.6 and 5.5 V, and for output powers between 200 muW and 1.5 mW. The presented circuit and control can be used as well for power optimization of electromagnetic energy harvesting devices.

426 citations

Proceedings ArticleDOI
27 Apr 2000
TL;DR: The Synchronized Switch Damping (SSD) as discussed by the authors is a semi-passive approach, where the piezoelectric inserts are continuously switched from open circuit to short circuit synchronously to the structure motion.
Abstract: The SSD technique proposed here addresses the problem of resonance damping on a mechanical structure. SSD stands for Synchronized Switch Damping. Apart from active techniques, passive ones consist in connecting a piezoelectric insert attached to the structure to a passive electric network in which the energy generated by the piezoelectric inserts is degraded. In the semi passive approach, the piezoelectric inserts are continuously switched from open circuit to short circuit synchronously to the structure motion. Due to this switching mechanism, a phase shift appears between the piezoelectric strain and the resulting voltage, thus creating energy dissipation. For the new technique proposed here, instead of discharging the piezoelectric inserts during a brief short circuit, they are connected on a small inductor, allowing the inversion of the voltage and then released to open circuit. In this case the voltage amplitude is optimized and is 90 degrees out of phase with the motion then enhancing the damping mechanism. The technique is applicable at any frequency without the need for a large tuned inductor, especially for low frequency applications. There is no need for external power supply unless for the low power circuitry of the switch device. The implementation of the switch drive with a very cheap micro-controller is described. Experimental results measured on cantilever beams made with different materials are proposed. Damping ability ranges from 6 dB on a very viscoelastic epoxy beam to nearly 20 dB on a steel beam. Harmonic excitation and transient results are both proposed and compared. Finally, an electromechanical model is proposed, giving an interpretation of the damping mechanism. Theoretical predictions are in good agreement with the experiments.

341 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Journal ArticleDOI
03 Sep 2008
TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Abstract: Energy harvesting generators are attractive as inexhaustible replacements for batteries in low-power wireless electronic devices and have received increasing research interest in recent years. Ambient motion is one of the main sources of energy for harvesting, and a wide range of motion-powered energy harvesters have been proposed or demonstrated, particularly at the microscale. This paper reviews the principles and state-of-art in motion-driven miniature energy harvesters and discusses trends, suitable applications, and possible future developments.

1,781 citations

Journal ArticleDOI
TL;DR: This Review tries to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically.
Abstract: Multiferroic magnetoelectric composite systems such as ferromagnetic-ferroelectric heterostructures have recently attracted an ever-increasing interest and provoked a great number of research activities, driven by profound physics from coupling between ferroelectric and magnetic orders, as well as potential applications in novel multifunctional devices, such as sensors, transducers, memories, and spintronics. In this Review, we try to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically.

1,642 citations

Journal ArticleDOI
TL;DR: A number of materials have been explored for their use as artificial muscles, but dielectric elastomers appear to provide the best combination of properties for true muscle-like actuation, and widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames.
Abstract: A number of materials have been explored for their use as artificial muscles Among these, dielectric elastomers (DEs) appear to provide the best combination of properties for true muscle-like actuation DEs behave as compliant capacitors, expanding in area and shrinking in thickness when a voltage is applied Materials combining very high energy densities, strains, and efficiencies have been known for some time To date, however, the widespread adoption of DEs has been hindered by premature breakdown and the requirement for high voltages and bulky support frames Recent advances seem poised to remove these restrictions and allow for the production of highly reliable, high-performance transducers for artificial muscle applications

1,299 citations

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques, and discuss the advantages and disadvantages of these voltage boosting techniques and associated converters.
Abstract: DC–DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which fundamental energy storing elements (inductors and capacitors) and/or transformers in conjunction with switch(es) and diode(s) are utilized in the circuit. These techniques include switched capacitor (charge pump), voltage multiplier, switched inductor/voltage lift, magnetic coupling, and multistage/-level, and each has its own merits and demerits depending on application, in terms of cost, complexity, power density, reliability, and efficiency. To meet the growing demand for such applications, new power converter topologies that use the above voltage-boosting techniques, as well as some active and passive components, are continuously being proposed. The permutations and combinations of the various voltage-boosting techniques with additional components in a circuit allow for numerous new topologies and configurations, which are often confusing and difficult to follow. Therefore, to present a clear picture on the general law and framework of the development of next-generation step-up dc–dc converters, this paper aims to comprehensively review and classify various step-up dc–dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc–dc converters are presented and summarized with comparative study of different voltage-boosting techniques.

1,230 citations