scispace - formally typeset
Search or ask a question
Author

Daniel H. Larkin

Bio: Daniel H. Larkin is an academic researcher from Princeton University. The author has contributed to research in topics: Disjoint sets & Heap (data structure). The author has an hindex of 4, co-authored 6 publications receiving 160 citations.

Papers
More filters
Proceedings ArticleDOI
05 Jan 2014
TL;DR: Two algorithms are deterministic, and thus the first deterministic (2 -- e)-approximation algorithm for the diameter that takes subquadratic time in sparse graphs is presented.
Abstract: The diameter is a fundamental graph parameter and its computation is necessary in many applications. The fastest known way to compute the diameter exactly is to solve the All-Pairs Shortest Paths (APSP) problem.In the absence of fast algorithms, attempts were made to seek fast algorithms that approximate the diameter. In a seminal result Aingworth, Chekuri, Indyk and Motwani [SODA'96 and SICOMP'99] designed an algorithm that computes in O (n2 + m√n) time an estimate D for the diameter D in directed graphs with nonnegative edge weights, such that [EQUATION], where M is the maximum edge weight in the graph. In recent work, Roditty and Vassilevska W. [STOC 13] gave a Las Vegas algorithm that has the same approximation guarantee but improves the (expected) runtime to O (m√n). Roditty and Vassilevska W. also showed that unless the Strong Exponential Time Hypothesis fails, no O (n2-e) time algorithm for sparse unweighted undirected graphs can achieve an approximation ratio better than 3/2. Thus their algorithm is essentially tight for sparse unweighted graphs. For weighted graphs however, the approximation guarantee can be meaningless, as M can be arbitrarily large.In this paper we exhibit two algorithms that achieve a genuine 3/2-approximation for the diameter, one running in O (m3/2) time, and one running in O (mn2/3). time. Furthermore, our algorithms are deterministic, and thus we present the first deterministic (2 -- e)-approximation algorithm for the diameter that takes subquadratic time in sparse graphs.In addition, we address the question of obtaining an additive c-approximation for the diameter, i.e. an estimate D such that D -- c ≤ D ≤ D. An extremely simple O (mn1-e) time algorithm achieves an additive ne-approximation; no better results are known. We show that for any e > 0, getting an additive ne-approximation algorithm for the diameter running in O (n2-e) time for any δ > 2e would falsify the Strong Exponential Time Hypothesis. Thus the simple algorithm is probably essentially tight for sparse graphs, and moreover, obtaining a subquadratic time additive c-approximation for any constant c is unlikely.Finally, we consider the problem of computing the eccentricities of all vertices in an undirected graph, i.e. the largest distance from each vertex. Roditty and Vassilevska W. [STOC 13] show that in O (m√n) time, one can compute for each v e V in an undirected graph, an estimate e(v) for the eccentricity e (v) such that max{R, 2/3 · e(v)} ≤ e (v) ≤ min {D, 3/2 · e(v)} where R = minv e (v) is the radius of the graph. Here we improve the approximation guarantee by showing that a variant of the same algorithm can achieve estimates e' (v) with 3/5 · e (v) ≤ e' (v) ≤ e (v).

116 citations

Proceedings Article
05 Jan 2014
TL;DR: This work takes the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations and shows that certain random insertion-deletion sequences are degenerate and can lead to misleading results.
Abstract: The theory community has proposed several new heap variants in the recent past which have remained largely untested experimentally. We take the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations. We study the behavior of each structure on a variety of inputs, including artificial workloads, workloads generated by running algorithms on real map data, and workloads from a discrete event simulator used in recent systems networking research. We provide observations about which characteristics are most correlated to performance. For example, we find that the L1 cache miss rate appears to be strongly correlated with wallclock time. We also provide observations about how the input sequence affects the relative performance of the different heap variants. For example, we show (both theoretically and in practice) that certain random insertion-deletion sequences are degenerate and can lead to misleading results. Overall, our findings suggest that while the conventional wisdom holds in some cases, it is sorely mistaken in others.

30 citations

Posted Content
TL;DR: In this article, the authors take the field back to the drawing board, with straightforward implementations of both classic and novel heap structures using only standard, well-known optimizations, and provide observations about which characteristics are most correlated to performance.
Abstract: The theory community has proposed several new heap variants in the recent past which have remained largely untested experimentally. We take the field back to the drawing board, with straightforward implementations of both classic and novel structures using only standard, well-known optimizations. We study the behavior of each structure on a variety of inputs, including artificial workloads, workloads generated by running algorithms on real map data, and workloads from a discrete event simulator used in recent systems networking research. We provide observations about which characteristics are most correlated to performance. For example, we find that the L1 cache miss rate appears to be strongly correlated with wallclock time. We also provide observations about how the input sequence affects the relative performance of the different heap variants. For example, we show (both theoretically and in practice) that certain random insertion-deletion sequences are degenerate and can lead to misleading results. Overall, our findings suggest that while the conventional wisdom holds in some cases, it is sorely mistaken in others.

17 citations

Proceedings ArticleDOI
05 Jan 2014
TL;DR: It is proved that randomized linking is asymptotically as efficient as linking by rank.
Abstract: A classic result in the analysis of data structures is that path compression with linking by rank solves the disjoint set union problem in almost-constant amortized time per operation. Recent experiments suggest that in practice, a naive linking method works just as well if not better than linking by rank, in spite of being theoretically inferior. How can this be? We prove that randomized linking is asymptotically as efficient as linking by rank. This result provides theory that matches the experiments, which implicitly do randomized linking as a result of the way the input instances are generated.

14 citations

Book ChapterDOI
08 Sep 2014
TL;DR: It is shown that the nested problem can be solved by extending the classic solution to support two nested partitions, at the cost of at most a few bits of storage per element and a small constant overhead in running time.
Abstract: We consider a version of the classic disjoint set union (union-find) problem in which there are two partitions of the elements, rather than just one, but restricted such that one partition is a refinement of the other. We call this the nested set union problem. This problem occurs in a new algorithm to find dominators in a flow graph. One can solve the problem by using two instances of a data structure for the classical problem, but it is natural to ask whether these instances can be combined. We show that the answer is yes: the nested problem can be solved by extending the classic solution to support two nested partitions, at the cost of at most a few bits of storage per element and a small constant overhead in running time. Our solution extends to handle any constant number of nested partitions.

1 citations


Cited by
More filters
Posted Content
TL;DR: In this article, the authors consider several well-studied problems in dynamic algorithms and prove that sufficient progress on any of them would imply a breakthrough on one of five major open problems in the theory of algorithms.
Abstract: We consider several well-studied problems in dynamic algorithms and prove that sufficient progress on any of them would imply a breakthrough on one of five major open problems in the theory of algorithms: 1. Is the 3SUM problem on $n$ numbers in $O(n^{2-\epsilon})$ time for some $\epsilon>0$? 2. Can one determine the satisfiability of a CNF formula on $n$ variables in $O((2-\epsilon)^n poly n)$ time for some $\epsilon>0$? 3. Is the All Pairs Shortest Paths problem for graphs on $n$ vertices in $O(n^{3-\epsilon})$ time for some $\epsilon>0$? 4. Is there a linear time algorithm that detects whether a given graph contains a triangle? 5. Is there an $O(n^{3-\epsilon})$ time combinatorial algorithm for $n\times n$ Boolean matrix multiplication? The problems we consider include dynamic versions of bipartite perfect matching, bipartite maximum weight matching, single source reachability, single source shortest paths, strong connectivity, subgraph connectivity, diameter approximation and some nongraph problems such as Pagh's problem defined in a recent paper by Patrascu [STOC 2010].

308 citations

Proceedings ArticleDOI
01 May 2019
TL;DR: Mimicking NP-hardness, the approach is to select a key problem X that is conjectured to not be solvable by any O(t(n)1 ") time algorithm, and reduce X in a fine-grained way to many important problems, thus giving tight conditional time lower bounds for them.
Abstract: In recent years, a new “fine-grained” theory of computational hardness has been developed, based on “fine-grained reductions” that focus on exact running times for problems. Mimicking NP-hardness, the approach is to (1) select a key problem X that for some function t , is conjectured to not be solvable by any O(t(n)1 ") time algorithm for " > 0, and (2) reduce X in a fine-grained way to many important problems, thus giving tight conditional time lower bounds for them. This approach has led to the discovery of many meaningful relationships between problems, and to equivalence

161 citations

Proceedings ArticleDOI
01 Jan 2015
TL;DR: Evidence is provided that a problem $A$ with a running time O(n^k) that has not been improved in decades, also requires n^{k-o(1)} time, thus explaining the lack of progress on the problem.
Abstract: Algorithmic research strives to develop fast algorithms for fundamental problems. Despite its many successes, however, many problems still do not have very efficient algorithms. For years researchers have explained the hardness for key problems by proving NP-hardness, utilizing polynomial time reductions to base the hardness of key problems on the famous conjecture P != NP. For problems that already have polynomial time algorithms, however, it does not seem that one can show any sort of hardness based on P != NP. Nevertheless, we would like to provide evidence that a problem $A$ with a running time O(n^k) that has not been improved in decades, also requires n^{k-o(1)} time, thus explaining the lack of progress on the problem. Such unconditional time lower bounds seem very difficult to obtain, unfortunately. Recent work has concentrated on an approach mimicking NP-hardness: (1) select a few key problems that are conjectured to require T(n) time to solve, (2) use special, fine-grained reductions to prove time lower bounds for many diverse problems in P based on the conjectured hardness of the key problems. In this abstract we outline the approach, give some examples of hardness results based on the Strong Exponential Time Hypothesis, and present an overview of some of the recent work on the topic.

158 citations

Posted Content
TL;DR: In this article, the authors presented a truly subquadratic approximation algorithm for most of the versions of Diameter and radius with \emph{optimal} approximation guarantees, under plausible assumptions, under the assumption that the eccentricity of a vertex is the largest distance from the vertex to another node.
Abstract: The radius and diameter are fundamental graph parameters They are defined as the minimum and maximum of the eccentricities in a graph, respectively, where the eccentricity of a vertex is the largest distance from the vertex to another node In directed graphs, there are several versions of these problems For instance, one may choose to define the eccentricity of a node in terms of the largest distance into the node, out of the node, the sum of the two directions (ie roundtrip) and so on All versions of diameter and radius can be solved via solving all-pairs shortest paths (APSP), followed by a fast postprocessing step Solving APSP, however, on $n$-node graphs requires $\Omega(n^2)$ time even in sparse graphs, as one needs to output $n^2$ distances Motivated by known and new negative results on the impossibility of computing these measures exactly in general graphs in truly subquadratic time, under plausible assumptions, we search for \emph{approximation} and \emph{fixed parameter subquadratic} algorithms, and for reasons why they do not exist Our results include: - Truly subquadratic approximation algorithms for most of the versions of Diameter and Radius with \emph{optimal} approximation guarantees (given truly subquadratic time), under plausible assumptions In particular, there is a $2$-approximation algorithm for directed Radius with one-way distances that runs in $\tilde{O}(m\sqrt{n})$ time, while a $(2-\delta)$-approximation algorithm in $O(n^{2-\epsilon})$ time is unlikely - On graphs with treewidth $k$, we can solve the problems in $2^{O(k\log{k})}n^{1+o(1)}$ time We show that these algorithms are near optimal since even a $(3/2-\delta)$-approximation algorithm that runs in time $2^{o(k)}n^{2-\epsilon}$ would refute the plausible assumptions

138 citations

Proceedings ArticleDOI
04 Jan 2015
TL;DR: The complexity of the mentioned centrality problems is related to two classical problems for which no truly subcubic algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter, and it is shown that Radius, Median and Betweenness Centrality are equivalent under sub cubic reductions to APSP, and Reach Centrality is equivalent to Diameter under subcUBic reductions.
Abstract: Measuring the importance of a node in a network is a major goal in the analysis of social networks, biological systems, transportation networks etc. Different centrality measures have been proposed to capture the notion of node importance. For example, the center of a graph is a node that minimizes the maximum distance to any other node (the latter distance is the radius of the graph). The median of a graph is a node that minimizes the sum of the distances to all other nodes. Informally, the betweenness centrality of a node w measures the fraction of shortest paths that have w as an intermediate node. Finally, the reach centrality of a node w is the smallest distance r such that any s-t shortest path passing through w has either s or t in the ball of radius r around w.The fastest known algorithms to compute the center and the median of a graph, and to compute the betweenness or reach centrality even of a single node take roughly cubic time in the number n of nodes in the input graph. It is open whether these problems admit truly subcubic algorithms, i.e. algorithms with running time O(n3-δ) for some constant δ > 01.We relate the complexity of the mentioned centrality problems to two classical problems for which no truly subcubic algorithm is known, namely All Pairs Shortest Paths (APSP) and Diameter. We show that Radius, Median and Betweenness Centrality are equivalent under subcubic reductions to APSP, i.e. that a truly subcubic algorithm for any of these problems implies a truly subcubic algorithm for all of them. We then show that Reach Centrality is equivalent to Diameter under subcubic reductions. The same holds for the problem of approximating Betweenness Centrality within any constant factor. Thus the latter two centrality problems could potentially be solved in truly subcubic time, even if APSP requires essentially cubic time.

130 citations