scispace - formally typeset
Search or ask a question
Author

Daniel Hoyer

Bio: Daniel Hoyer is an academic researcher from University of Melbourne. The author has contributed to research in topics: Receptor & Somatostatin receptor. The author has an hindex of 86, co-authored 415 publications receiving 30916 citations. Previous affiliations of Daniel Hoyer include Novartis & Salk Institute for Biological Studies.


Papers
More filters
Journal Article
TL;DR: It is evident that in the last decade or so, a vast amount of new information has become available concerning the various 5-HT receptor types and their characteristics, and it is important to rationalise in concert all of the available data from studies involving both operational approaches of the classical pharmacological type and those from molecular and cellular biology.
Abstract: It is evident that in the last decade or so, a vast amount of new information has become available concerning the various 5-HT receptor types and their characteristics. This derives from two main research approaches, operational pharmacology, using selective ligands (both agonists and antagonists), and, more recently, molecular biology. Although the scientific community continues to deliberate about the hierarchy of criteria for neurotransmitter receptor characterisation, there seems good agreement between the two approaches regarding 5-HT receptor classification. In addition, the information regarding transduction mechanisms and second messengers is also entirely consistent. Thus, on the basis of these essential criteria for receptor characterisation and classification, there are at least three main groups or classes of 5-HT receptor: 5-HT1, 5-HT2, and 5-HT3. Each group is not only operationally but also structurally distinct, with each receptor group having its own distinct transducing system. The more recently identified 5-HT4 receptor almost undoubtedly represents a fourth 5-HT receptor class on the basis of operational and transductional data, but this will only be definitively shown when the cDNA for the receptor has been cloned and the amino acid sequence of the protein is known. Although those 5-HT receptors that have been fully characterised and classified to date (and, hence, named with confidence) would seem to mediate the majority of the actions of 5-HT throughout the mammalian body, not all receptors for 5-HT are fully encompassed within our scheme of classification. These apparent anomalies must be recognised and need further study. They may or may not represent new groups of 5-HT receptor or subtypes of already known groups of 5-HT receptor. Even though the cDNAs for the 5-ht1E, 5-ht1F, 5-ht5, 5-ht6, and 5-ht7 receptors have been cloned and their amino acid sequence defined, more data are necessary concerning their operational and transductional characteristics before one can be confident of the suitability of their appellations. Therefore, it is important to rationalise in concert all of the available data from studies involving both operational approaches of the classical pharmacological type and those from molecular and cellular biology.(ABSTRACT TRUNCATED AT 400 WORDS)

3,069 citations

Journal ArticleDOI
TL;DR: The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13 distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These receptors are divided into seven distinct classes (5-HT(1) to 5-HT(7)) largely on the basis of their structural and operational characteristics. Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.

1,823 citations

Journal ArticleDOI
TL;DR: The guidelines have been simplified for ease of understanding by authors, to make it more straightforward for peer reviewers to check compliance and to facilitate the curation of the journal's efforts to improve standards.
Abstract: This article updates the guidance published in 2015 for authors submitting papers to British Journal of Pharmacology (Curtis et al., 2015) and is intended to provide the rubric for peer review. Thus, it is directed towards authors, reviewers and editors. Explanations for many of the requirements were outlined previously and are not restated here. The new guidelines are intended to replace those published previously. The guidelines have been simplified for ease of understanding by authors, to make it more straightforward for peer reviewers to check compliance and to facilitate the curation of the journal's efforts to improve standards.

1,070 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a series of linked editorials in the context of biomedical journal abstracts, including: http://onlinelibrary.wiley.com/doi/10.1111/bph.12954/abstract, http://Onlinelabel. wiley. com/doi /10.12956/ABstract, https://www.wired.org/content/index.cfm/
Abstract: Linked Editorials This Editorial is part of a series. To view the other Editorials in this series, visit: http://onlinelibrary.wiley.com/doi/10.1111/bph.12956/abstract; http://onlinelibrary.wiley.com/doi/10.1111/bph.12954/abstract; http://onlinelibrary.wiley.com/doi/10.1111/bph.12955/abstract and http://onlinelibrary.wiley.com/doi/10.1111/bph.13112/abstract

939 citations

Journal ArticleDOI
Jason P. Hannon1, Daniel Hoyer1
TL;DR: Evidence for an even greater degree of operational diversity is supported by the existence of a great number of splice and editing variants for several 5-HT receptors, their possible modulation by accessory proteins and chaperones, as well as their potential to form homo or heteromers both at the GPCR and at the ligand-gated channel level.

683 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Two classes of improved estimators for mutual information M(X,Y), from samples of random points distributed according to some joint probability density mu(x,y), based on entropy estimates from k -nearest neighbor distances are presented.
Abstract: We present two classes of improved estimators for mutual information M(X,Y), from samples of random points distributed according to some joint probability density mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from k -nearest neighbor distances. This means that they are data efficient (with k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/N for N points. Numerically, we find that both families become exact for independent distributions, i.e. the estimator M(X,Y) vanishes (up to statistical fluctuations) if mu(x,y)=mu(x)mu(y). This holds for all tested marginal distributions and for all dimensions of x and y. In addition, we give estimators for redundancies between more than two random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.

3,224 citations

Journal ArticleDOI
TL;DR: An overview is presented of the medical image processing literature on mutual-information-based registration, an introduction for those new to the field, an overview for those working in the field and a reference for those searching for literature on a specific application.
Abstract: An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.

3,121 citations

Journal ArticleDOI
TL;DR: A number of 5-HT receptor ligands are currently utilised, or are in clinical development, to reduce the symptoms of CNS dysfunction and the functional responses attributed to each receptor in the brain are reviewed.

3,074 citations

Journal Article
TL;DR: It is evident that in the last decade or so, a vast amount of new information has become available concerning the various 5-HT receptor types and their characteristics, and it is important to rationalise in concert all of the available data from studies involving both operational approaches of the classical pharmacological type and those from molecular and cellular biology.
Abstract: It is evident that in the last decade or so, a vast amount of new information has become available concerning the various 5-HT receptor types and their characteristics. This derives from two main research approaches, operational pharmacology, using selective ligands (both agonists and antagonists), and, more recently, molecular biology. Although the scientific community continues to deliberate about the hierarchy of criteria for neurotransmitter receptor characterisation, there seems good agreement between the two approaches regarding 5-HT receptor classification. In addition, the information regarding transduction mechanisms and second messengers is also entirely consistent. Thus, on the basis of these essential criteria for receptor characterisation and classification, there are at least three main groups or classes of 5-HT receptor: 5-HT1, 5-HT2, and 5-HT3. Each group is not only operationally but also structurally distinct, with each receptor group having its own distinct transducing system. The more recently identified 5-HT4 receptor almost undoubtedly represents a fourth 5-HT receptor class on the basis of operational and transductional data, but this will only be definitively shown when the cDNA for the receptor has been cloned and the amino acid sequence of the protein is known. Although those 5-HT receptors that have been fully characterised and classified to date (and, hence, named with confidence) would seem to mediate the majority of the actions of 5-HT throughout the mammalian body, not all receptors for 5-HT are fully encompassed within our scheme of classification. These apparent anomalies must be recognised and need further study. They may or may not represent new groups of 5-HT receptor or subtypes of already known groups of 5-HT receptor. Even though the cDNAs for the 5-ht1E, 5-ht1F, 5-ht5, 5-ht6, and 5-ht7 receptors have been cloned and their amino acid sequence defined, more data are necessary concerning their operational and transductional characteristics before one can be confident of the suitability of their appellations. Therefore, it is important to rationalise in concert all of the available data from studies involving both operational approaches of the classical pharmacological type and those from molecular and cellular biology.(ABSTRACT TRUNCATED AT 400 WORDS)

3,069 citations

Journal ArticleDOI
TL;DR: The present review focuses on the organisation of descending pathways and their pathophysiological significance, the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls.

2,565 citations