scispace - formally typeset
Search or ask a question
Author

Daniel J. Brod

Bio: Daniel J. Brod is an academic researcher from Federal Fluminense University. The author has contributed to research in topics: Quantum computer & Boson. The author has an hindex of 17, co-authored 46 publications receiving 1801 citations. Previous affiliations of Daniel J. Brod include Perimeter Institute for Theoretical Physics.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a five-mode integrated interferometer containing three-dimensional S-bent waveguides was used to sample three single photons and the probability ratios of all events were measured.
Abstract: The boson-sampling problem was demonstrated by studying three-photon interference in a five-mode integrated interferometer containing three-dimensional S-bent waveguides. Three single photons were input into the interferometer and the probability ratios of all events were measured. The results agree with quantum mechanical predictions for three-photon interference.

668 citations

Journal ArticleDOI
TL;DR: In this paper, the Aaronson-Arkhipov test is used to distinguish the AARonson-Arkinov test from uniformly drawn samples for boson-sampling experiments.
Abstract: To address the controversy regarding the validation of an experiment that is hard to simulate, boson-sampling experiments are implemented with three photons in randomly designed integrated chips with up to 13 modes. It is experimentally demonstrated that the Aaronson–Arkhipov test allows boson-sampling experiments to be distinguished from uniformly drawn samples.

331 citations

Journal ArticleDOI
TL;DR: The first scattershot boson sampling experiments are reported, where six different photon-pair sources are coupled to integrated photonic circuits, providing strong evidence that the photonic quantum simulator works as expected.
Abstract: Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

269 citations

Journal ArticleDOI
13 May 2019
TL;DR: This work reviews recent advances and discusses the future application of photonic boson sampling devices beyond the original theoretical scope, describing both the technological improvements achieved and the future challenges.
Abstract: Boson sampling is a computational problem that has recently been proposed as a candidate to obtain an unequivocal quantum computational advantage. The problem consists in sampling from the output distribution of indistinguishable bosons in a linear interferometer. There is strong evidence that such an experiment is hard to classically simulate, but it is naturally solved by dedicated photonic quantum hardware, comprising single photons, linear evolution, and photodetection. This prospect has stimulated much effort resulting in the experimental implementation of progressively larger devices. We review recent advances in photonic boson sampling, describing both the technological improvements achieved and the future challenges. We also discuss recent proposals and implementations of variants of the original problem, theoretical issues occurring when imperfections are considered, and advances in the development of suitable techniques for validation of boson sampling experiments. We conclude by discussing the future application of photonic boson sampling devices beyond the original theoretical scope.

123 citations

Journal ArticleDOI
TL;DR: The authors' experiments verify two rules that govern bosonic bunching and establish a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons.
Abstract: We perform a comprehensive set of experiments that characterize bosonic bunching of up to three photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently, predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new and establishes a $n!$-factor quantum enhancement for the probability that all $n$ bosons bunch in a single output mode, with respect to the case of distinguishable bosons. In addition to its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

80 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
18 Dec 2020-Science
TL;DR: In this paper, the authors proposed to use quantum computers to perform certain tasks that are believed to be intractable to classical computers, such as Boson sampling, which is considered a strong candidate to demonstrate the capabilities of quantum computers.
Abstract: Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the ...

1,086 citations

Journal ArticleDOI
TL;DR: In this article, a single photon with near-unity indistinguishability was generated from quantum dots in electrically controlled cavity structures, which allowed for efficient photon collection while application of an electrical bias cancels charge noise effects.
Abstract: A single photon with near-unity indistinguishability is generated from quantum dots in electrically controlled cavity structures. The cavity allows for efficient photon collection while application of an electrical bias cancels charge noise effects.

1,049 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the characteristics of ultrafast laser processing and the recent advancements and applications of both surface and volume processing is presented, and a summary of the technology with future outlooks are also given.
Abstract: The unique characteristics of ultrafast lasers, such as picosecond and femtosecond lasers, have opened up new avenues in materials processing that employ ultrashort pulse widths and extremely high peak intensities. Thus, ultrafast lasers are currently used widely for both fundamental research and practical applications. This review describes the characteristics of ultrafast laser processing and the recent advancements and applications of both surface and volume processing. Surface processing includes micromachining, micro- and nanostructuring, and nanoablation, while volume processing includes two-photon polymerization and three-dimensional (3D) processing within transparent materials. Commercial and industrial applications of ultrafast laser processing are also introduced, and a summary of the technology with future outlooks are also given. Scientists in Asia have reviewed the role of ultrafast lasers in materials processing. Koji Sugioka from RIKEN in Japan and Ya Cheng from the Shanghai Institute of Optics and Fine Mechanics in China describe how femtosecond and picosecond lasers can be used to perform useful tasks in both surface and volume processing. Such lasers can cut, drill and ablate a variety of materials with high precision, including metals, semiconductors, ceramics and glasses. They can also polymerize organic materials that contain a suitable photosensitizer and can three-dimensionally process inside transparent materials such as glass, and are already being used to fabricate medical stents, repair photomasks, drill ink-jet nozzles and pattern solar cells. The researchers also explain the characteristics of such lasers and the interaction of ultrashort, intense pulses of light with matter.

973 citations

Journal ArticleDOI
14 Aug 2015-Science
TL;DR: In this paper, a sixmode universal system consisting of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip was demonstrated.
Abstract: Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies.

929 citations