scispace - formally typeset
Search or ask a question
Author

Daniel J. Gauthier

Bio: Daniel J. Gauthier is an academic researcher from Ohio State University. The author has contributed to research in topics: Slow light & Brillouin scattering. The author has an hindex of 63, co-authored 464 publications receiving 15173 citations. Previous affiliations of Daniel J. Gauthier include Mines ParisTech & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that stimulated Brillouin scattering can be used to generate all-optical slow-light pulse delays of greater than a pulse length for pulses as short as 16 ns in a single-mode fiber, and strongly suggest that analogous delays can be achieved using stimulated Raman scattering at telecommunication data rates.
Abstract: We demonstrate a technique for generating tunable all-optical delays in room temperature single-mode optical fibers at telecommunication wavelengths using the stimulated Brillouin scattering process. This technique makes use of the rapid variation of the refractive index that occurs in the vicinity of the Brillouin gain feature. The wavelength at which the induced delay occurs is broadly tunable by controlling the wavelength of the laser pumping the process, and the magnitude of the delay can be tuned continuously by as much as 25 ns by adjusting the intensity of the pump field. The technique can be applied to pulses as short as 15 ns. This scheme represents an important first step towards implementing slow-light techniques for various applications including buffering in telecommunication systems.

868 citations

Journal ArticleDOI
TL;DR: A proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon and demonstrates that, in addition to having an increased information capacity, multilevel QK D systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.
Abstract: Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.

571 citations

Journal ArticleDOI
TL;DR: The spectral and temporal response of an optical cavity resonantly coupled to an ensemble of barium atoms has been investigated experimentally and the empty-cavity transmission resonances are found to split in the presence of the atoms and the cavity's temporal response is found to be oscillatory.
Abstract: The spectral and temporal response of an optical cavity resonantly coupled to an ensemble of barium atoms has been investigated experimentally. The empty-cavity trnasmission resonances are found to split in the presence of the atoms and, under these conditions, the cavity's temporal response is found to be oscillatory. These effects may be viewed as a manifestation of a vacuum-field Rabi splitting, or as a simple consequence of the linear absorption and dispersion of the intracavity atoms.

437 citations

Journal ArticleDOI
TL;DR: This work presents a technique for stabilizing unstable periodic orbits in low-dimensional dynamical systems that allows for control over a large domain of parameters and demonstrates that the approach is well suited for pratical implementation in fast systems by stabilizing a chaotic diode resonator driven at 10.1 MHz.
Abstract: We present a technique for stabilizing unstable periodic orbits in low-dimensional dynamical systems that allows for control over a large domain of parameters. The technique uses a continuous feedback loop incorporating information from many previous states of the system in a form closely related to the amplitude of light reflected from a Fabry-P\'erot interferometer. We demonstrate that the approach is well suited for pratical implementation in fast systems by stabilizing a chaotic diode resonator driven at 10.1 MHz.

348 citations

Journal ArticleDOI
14 Dec 2007-Science
TL;DR: In this article, the authors describe a method for storing sequences of optical data pulses by converting them into long-lived acoustic excitations in an optical fiber through the process of stimulated Brillouin scattering.
Abstract: We describe a method for storing sequences of optical data pulses by converting them into long-lived acoustic excitations in an optical fiber through the process of stimulated Brillouin scattering. These stored pulses can be retrieved later, after a time interval limited by the lifetime of the acoustic excitation. In the experiment reported here, smooth 2-nanosecond-long pulses are stored for up to 12 nanoseconds with good readout efficiency: 29% at 4-nanosecond storage time and 2% at 12 nanoseconds. This method thus can potentially store data packets that are many bits long. It can be implemented at any wavelength where the fiber is transparent and can be incorporated into existing telecommunication networks because it operates using only commercially available components at room temperature.

333 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations

Journal ArticleDOI
TL;DR: Synchronization of chaos refers to a process where two chaotic systems adjust a given property of their motion to a common behavior due to a coupling or to a forcing (periodical or noisy) as discussed by the authors.

2,266 citations