scispace - formally typeset
Search or ask a question

Showing papers by "Daniel J. Hoppe published in 2012"


Patent
09 Mar 2012
TL;DR: In this paper, a beam-forming concentrating solar thermal array power system is described, where a plurality of solar concentrators arranged in pods are used to concentrate the rays of sunlight into a beam.
Abstract: The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam- forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

18 citations


Proceedings ArticleDOI
17 Jun 2012
TL;DR: In this article, the authors proposed the design of new millimeter-wave radiometers for Earth remote sensing using ocean surface altimeters, motivated by the fact that these missions include nadir-viewing, co-located 18-37 GHz microwave radiometers to measure wet-tropospheric path delay.
Abstract: The recent introduction of 35-nm gate length InP MMIC low-noise amplifiers has enabled significant advances in Earth remote sensing. These low-noise amplifiers achieve 2-dB and 3-dB noise figure at 180 GHz and 90 GHz, respectively, at room temperature. For Earth remote sensing using ocean surface altimeters, the design of new millimeter-wave radiometers is motivated by the fact that these missions include nadir-viewing, co-located 18–37 GHz microwave radiometers to measure wet-tropospheric path delay. However, due to the substantial area of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals begins to degrade at approximately 50 km from the coasts. In addition, conventional microwave radiometers do not provide wet-path delay over land. For a maximum antenna aperture size on Earth observation satellites, the addition of higher-frequency millimeter-wave (90–170 GHz) radiometers to current Jason-class radiometers is expected to improve retrievals of wet-tropospheric delay in coastal areas and to increase the potential for over-land retrievals.

16 citations


Journal ArticleDOI
TL;DR: A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission as discussed by the authors.
Abstract: A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies, including rivers, lakes, reservoirs, and wetlands. In this innovation, the feed provides three separate output ports in the 87-to- 97-GHz, 125-to-135-GHz, and 161-to-183- GHz bands; WR10 for the 90-GHz channel, WR8 for the 130-GHz channel, and WR5 for the 170-GHz channel. These ports are in turn connected to individual radiometer channels that will also demonstrate component technology including new PIN-diode switches and noise diodes for internal calibration integrated into each radiometer front end. For this application, a prime focus feed is required with an edge taper of approximately 20 dB at an illumination angle of 40 deg. A single polarization is provided in each band. Preliminary requirements called for a return loss of better than 15 dB, which is achieved across all three bands. Good pattern symmetry is also obtained throughout all three-frequency bands. This three-frequency broadband millimeter-wave feed also minimizes mass and provides a common focal point for all three millimeter-wave bands.

2 citations


22 May 2012
TL;DR: In this article, the authors proposed a hybrid ground station that can support both RF and optical communications in support of future solar system exploration and telemetry and emergency purposes, and evaluated several approaches and techniques for field examination and validation.
Abstract: To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

2 citations


Proceedings ArticleDOI
08 Jul 2012
TL;DR: In this paper, NASA's DSN 34m Beam Waveguide (BWG) antenna was implemented to reduce near-field RF exposure while improving the antenna noise temperature. But the authors did not consider the structural integrity of the existing antenna.
Abstract: Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.