scispace - formally typeset
Search or ask a question
Author

Daniel J. Hoppe

Other affiliations: Jet Propulsion Laboratory
Bio: Daniel J. Hoppe is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Antenna (radio) & NASA Deep Space Network. The author has an hindex of 16, co-authored 77 publications receiving 1046 citations. Previous affiliations of Daniel J. Hoppe include Jet Propulsion Laboratory.


Papers
More filters
Book ChapterDOI
10 Apr 2006

2 citations

01 Apr 2003
TL;DR: In this article, a carbon nanotube array is used as an RF filter bank for stable, low-noise communications and radar applications, which can exhibit orders of magnitude higher Qs than electronic resonators.
Abstract: Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.

2 citations

Proceedings ArticleDOI
20 Jun 1994
TL;DR: In this paper, the use of a ferrite circulator was discussed in the context of the JPL/NASA Deep Space Network (DSN) in order to avoid the heat dissipation, waveguide loss, and arcing problems aggravated by high average power.
Abstract: Transmitters of the JPL/NASA Deep Space Network (DSN) typically operate at power levels in excess of 100 kW. This causes heat dissipation and loss problems even in the conventional DSN transmit frequencies of the S and X bands. These problems are compounded by operation in continuous mode, rather than in pulsed operation where the average power is low. In an effort to avoid the heat dissipation, waveguide loss, and arcing problems aggravated by high average power, the DSN has helped pioneer the development of beam waveguide antennas. These beam waveguide antennas use quasi-optical techniques to confine the fields, eliminating waveguide usage and their associated losses. The development of quasi-optical, non-reciprocal devices is natural to the beam waveguide environment. The present paper discusses the use of a ferrite circulator in this context.

2 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors discuss the conceptual and practical guidelines of a method to calculate the cross-polarization of a telescope, including its relay optics, using a commercial optical design software, without the need to use complex, slow and expensive Physical Optics programs.
Abstract: We discuss the conceptual and practical guidelines of a method to calculate the cross-polarization of a telescope, including its relay optics, using a commercial optical design software, without the need to use complex, slow and expensive Physical Optics programs. These effects are usually negligible at visible and infrared wavelengths but may be of considerable importance at radio wavelengths. Offset reflector antenna configurations, common in the telecommunication industry, and antenna relay optics consisting of offset mirrors, common in millimeter and submillimeter-wave telescopes, result in an increased contribution to the cross-polarization. Polarization measurements are also becoming very important in Radio Astronomy. In fact, dust emission polarimetry and the study of linearly polarized, nonmasing, rotational lines (e.g., CO) with submm telescopes are both powerful diagnostic of magnetic fields in molecular clouds. However, the low average source polarization requires a careful optimization of the optical design to keep any instrumental polarization contribution from both telescope and relay optics as low as possible in astronomical polarimetry experiments. Likewise, in telecommunications applications polarization separation can be used to effectively double the available bandwidth provided the isolation between the two orthogonal polarization states is sufficient.

2 citations

Journal ArticleDOI
TL;DR: A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission as discussed by the authors.
Abstract: A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies, including rivers, lakes, reservoirs, and wetlands. In this innovation, the feed provides three separate output ports in the 87-to- 97-GHz, 125-to-135-GHz, and 161-to-183- GHz bands; WR10 for the 90-GHz channel, WR8 for the 130-GHz channel, and WR5 for the 170-GHz channel. These ports are in turn connected to individual radiometer channels that will also demonstrate component technology including new PIN-diode switches and noise diodes for internal calibration integrated into each radiometer front end. For this application, a prime focus feed is required with an edge taper of approximately 20 dB at an illumination angle of 40 deg. A single polarization is provided in each band. Preliminary requirements called for a return loss of better than 15 dB, which is achieved across all three bands. Good pattern symmetry is also obtained throughout all three-frequency bands. This three-frequency broadband millimeter-wave feed also minimizes mass and provides a common focal point for all three millimeter-wave bands.

2 citations


Cited by
More filters
Patent
16 Jul 2002
TL;DR: In this paper, the fabrication and growth of sub-microelectronic circuitry is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.

598 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature related to the vibratory behavior of carbon nanotubes and their composites is presented, along with key conclusions and recommendations from these studies.

502 citations

Patent
04 Oct 2006
TL;DR: A bulk-doped semiconductor is a semiconductor that is at least one of the following: a single crystal, an elongated and bulk-depletioned semiconductor with a largest cross-sectional dimension less than 500 nanometers as discussed by the authors.
Abstract: A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and may have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.

460 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a wideband ultra wideband (UWB) communication protocol with a low EIRP level (−41.3dBm/MHz) for unlicensed operation between 3.1 and 10.6 GHz.
Abstract: Before the emergence of ultra-wideband (UWB) radios, widely used wireless communications were based on sinusoidal carriers, and impulse technologies were employed only in specific applications (e.g. radar). In 2002, the Federal Communication Commission (FCC) allowed unlicensed operation between 3.1–10.6 GHz for UWB communication, using a wideband signal format with a low EIRP level (−41.3dBm/MHz). UWB communication systems then emerged as an alternative to narrowband systems and significant effort in this area has been invested at the regulatory, commercial, and research levels.

452 citations

Book
01 Oct 2002
TL;DR: In this article, a method of moments (MoM) was proposed for electromagnetic modeling of composite metallic and dielectric structures using entire-domain basis functions defined over bilinear surfaces, resulting in a remarkably small number of unknowns.
Abstract: Starting from the equivalence theorem any composite metallic and dielectric structure can be analyzed by using SIE (surface integral equations). Such integral equations are usually solved by MoM (method of moments). Most of the existing MoM methods for solving SIE are developed for BORs (bodies of revolution). There are only few such methods that can handle structures of arbitrary shape. These methods use sub-domain basis functions defined over triangles, requiring a very large number of unknowns even for the simplest problems. This paper presents a new MoM method for electromagnetic modeling of composite metallic and dielectric structures. The method uses entire-domain basis functions defined over bilinear surfaces, resulting in a remarkably small number of unknowns.

439 citations