scispace - formally typeset
Search or ask a question
Author

Daniel J. King

Other affiliations: Agricultural Research Service
Bio: Daniel J. King is an academic researcher from United States Department of Agriculture. The author has contributed to research in topics: Newcastle disease & Virus. The author has an hindex of 33, co-authored 49 publications receiving 3795 citations. Previous affiliations of Daniel J. King include Agricultural Research Service.

Papers
More filters
Journal ArticleDOI
TL;DR: A positive correlation was obtained between the RRT-PCR results and virus isolation for NDV from clinical samples, and a real-time reverse-transcription PCR test was developed to detect avian paramyxovirus 1 (APMV-1) RNA in clinical samples from birds.
Abstract: A real-time reverse-transcription PCR (RRT-PCR) was developed to detect avian paramyxovirus 1 (APMV-1) RNA, also referred to as Newcastle disease virus (NDV), in clinical samples from birds. The assay uses a single-tube protocol with fluorogenic hydrolysis probes. Oligonucleotide primers and probes were designed to detect sequences from a conserved region of the matrix protein (M) gene that recognized a diverse set (n = 44) of APMV-1 isolates. A second primer-probe set was targeted to sequences in the fusion protein (F) gene that code for the cleavage site and detect potentially virulent NDV isolates. A third set, also directed against the M gene, was specific for the North American (N.A.) pre-1960 genotype that includes the common vaccine strains used in commercial poultry in the United States. The APMV-1 M gene, N.A. pre-1960 M gene, and F gene probe sets were capable of detecting approximately 103, 102, and 104 genome copies, respectively, with in vitro-transcribed RNA. Both M gene assays could detect approximately 101 50% egg infective doses (EID50), and the F gene assay could detect approximately 103 EID50. The RRT-PCR test was used to examine clinical samples from chickens experimentally infected with the NDV strain responsible for a recent epizootic in the southwestern United States. Overall, a positive correlation was obtained between the RRT-PCR results and virus isolation for NDV from clinical samples.

442 citations

Journal ArticleDOI
10 Oct 2007-Vaccine
TL;DR: NDV vaccines formulated to be phylogenetically closer to potential outbreak viruses may provide better ND control by reducing virus transmission from infected birds.

271 citations

Journal ArticleDOI
16 May 2005-Vaccine
TL;DR: The results indicated that both the live and inactivated vaccines protected against morbidity and mortality and significantly reduced the incidence and viral titers shed from chickens in comparison with sham controls, but did not prevent infection and virus shedding.

236 citations

Journal ArticleDOI
TL;DR: Differences in the fusion protein cleavage sequence that correlated genotypically with virulence among various NDV pathotypes were detected and lentogenic viruses were grouped phylogenetically separate from other pathotypes by using sequences generated from the matrix protein gene coding for the nuclear localization signal.
Abstract: Degenerate oligonucleotide primers were synthesized to amplify nucleotide sequences from portions of the fusion protein and matrix protein genes of Newcastle disease virus (NDV) genomic RNA that could be used diagnostically. These primers were used in a single-tube reverse transcription PCR of NDV genomic RNA coupled to direct nucleotide sequencing of the amplified product to characterize more than 30 NDV isolates. In agreement with previous reports, differences in the fusion protein cleavage sequence that correlated genotypically with virulence among various NDV pathotypes were detected. By using sequences generated from the matrix protein gene coding for the nuclear localization signal, lentogenic viruses were again grouped phylogenetically separate from other pathotypes. These techniques were applied to compare neurotropic velogenic viruses isolated from an outbreak of Newcastle disease in cormorants and turkeys. Cormorant NDV isolates and an NDV isolate from an infected turkey flock in North Dakota had the fusion protein cleavage sequence 109SRGRRQKRFVG119. The R-for-G substitution at position 110 may be unique for the cormorant-type isolates. Although the amino acid sequences from the fusion protein cleavage site were identical, nucleotide sequence data correlate the outbreak in turkeys to a cormorant virus isolate from Minnesota and not to a cormorant virus isolate from Michigan. On the basis of sequence information, the cormorant isolates are virulent viruses related to isolates of psittacine origin, possibly genotypically distinct from other velogenic NDV isolates. These techniques can be used reliably for Newcastle disease epidemiology and for prediction of pathotypes of NDV isolates without traditional live-bird inoculations.

229 citations

Journal ArticleDOI
TL;DR: The close phylogenetic proximity of some WS and LBM loNDV suggests that viral transmission may occur among wild birds and poultry; however, these events may occur unnoticed due to the broad genetic diversity of lo NDV, the lentogenic presentation in birds, and the limitations of current rapid diagnostic tools.
Abstract: Low-virulence Newcastle disease viruses (loNDV) are frequently recovered from wild bird species, but little is known about their distribution, genetic diversity, or potential to cause disease in poultry. NDV isolates recovered from cloacal samples of apparently healthy waterfowl and shorebirds (WS) in the United States during 1986 to 2005 were examined for genomic diversity and their potential for virulence (n = 249). In addition 19 loNDV isolates from U.S. live bird markets (LBMs) were analyzed and found to be genetically distinct from NDV used in live vaccines but related to WS-origin NDV. Phylogenetic analysis of the fusion protein identified nine novel genotypes among the class I NDV, and new genomic subgroups were identified among genotypes I and II of the class II viruses. The WS-origin viruses exhibited broad genetic and antigenic diversity, and some WS genotypes displayed a closer phylogenetic relationship to LBM-origin NDV. All NDV were predicted to be lentogenic based upon sequencing of the fusion cleavage site, intracerebral pathogenicity index, or mean death time in embryo assays. The USDA real-time reverse transcription-PCR assay, which targets the matrix gene, identified nearly all of the class II NDV tested but failed to detect class I viruses from both LBM and WS. The close phylogenetic proximity of some WS and LBM loNDV suggests that viral transmission may occur among wild birds and poultry; however, these events may occur unnoticed due to the broad genetic diversity of loNDV, the lentogenic presentation in birds, and the limitations of current rapid diagnostic tools.

225 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 1941-Nature
TL;DR: In this article, Gray has written a book on diseases of poultry, Diseases of Poultry Their Aetiology, Diagnosis, Treatment and Control; with a Section on the Normal Anatomy and Physiology of the Fowl.
Abstract: VERY few veterinary surgeons have thought fit to write a book on diseases of poultry. Mr. Ernest Gray has done justice to the subject and is to be congratulated on his effort. A book of this size, written by one with specialized knowledge, will add to the value of any library or private bookshelf. Diseases of Poultry Their Aetiology, Diagnosis, Treatment and Control; with a Section on the Normal Anatomy and Physiology of the Fowl. By Ernest Gray. (Lockwood's Agricultural and Horticultural Handbooks.) Pp. x + 198 + 16 plates. (London: Crosby Lockwood and Son, Ltd., 1940.) 9s. 6d. net.

1,282 citations

Journal ArticleDOI
TL;DR: Newcastle disease (ND), caused by avian paramyxovirus serotype 1 (APMV-1) viruses, is included in List A of the Office International des Epizooties as mentioned in this paper.
Abstract: Newcastle disease (ND), caused by avian paramyxovirus serotype 1 (APMV-1) viruses, is included in List A of the Office International des Epizooties. Historically, ND has been a devastating disease of poultry, and in many countries the disease remains one of the major problems affecting existing or developing poultry industries. Even in countries where ND may be considered to be controlled, an economic burden is still associated with vaccination and/or maintaining strict biosecurity measures. The variable nature of Newcastle disease virus strains in terms of virulence for poultry and the different susceptibilities of the different species of birds mean that for control and trade purposes, ND requires careful definition. Confirmatory diagnosis of ND requires the isolation and characterisation of the virus involved. Assessments of virulence conventionally require in vivo testing. However, in vitro genetic characterisation of viruses is being used increasingly now that the molecular basis of pathogenicity is more fully understood. Control of ND is by prevention of introduction and spread, good biosecurity practices and/or vaccination. Newcastle disease viruses may infect humans, usually causing transient conjunctivitis, but human-to-human spread has never been reported. Eight other serotypes of avian paramyxoviruses are recognised, namely: APMV-2 to APMV-9. Most of these serotypes appear to be present in natural reservoirs of specific feral avian species, although other host species are usually susceptible. Only APMV-2 and APMV-3 viruses have made a significant disease and economic impact on poultry production. Both types of viruses cause respiratory disease and egg production losses which may be severe when exacerbated by other infections or environmental stresses. No reports exist of natural infections of chickens with APMV-3 viruses.

741 citations

Journal ArticleDOI
TL;DR: Reconstruction of the genes of the 1918 pandemic virus and studies on their contribution to virulence will be important steps toward understanding the biological capabilities of this lethal virus.
Abstract: Influenza remains an important disease in humans and animals. In contrast to measles, smallpox and poliomyelitis, influenza is caused by viruses that undergo continuous antigenic change and that possess an animal reservoir. Thus, new epidemics and pandemics are likely to occur in the future, and eradication of the disease will be difficult to achieve. Although it is not clear whether a new pandemic is imminent, it would be prudent to take into account the lessons we have learned from studying different human and animal influenza viruses. Specifically, reconstruction of the genes of the 1918 pandemic virus and studies on their contribution to virulence will be important steps toward understanding the biological capabilities of this lethal virus. Increasing the availability of new antiviral drugs and developing superior vaccines will provide us with better approaches to control influenza and to have a positive impact on disease load. A concern is that the imposition of new rules for working with infectious influenza viruses under high security and high containment conditions will stifle scientific progress. The complex questions of what makes an influenza virus transmissible from one human to another and from one species to another, as well as how the immune system interacts with the virus, will require the active collaboration and unencumbered work of many scientific groups.

570 citations

Journal ArticleDOI
TL;DR: A positive correlation was obtained between the RRT-PCR results and virus isolation for NDV from clinical samples, and a real-time reverse-transcription PCR test was developed to detect avian paramyxovirus 1 (APMV-1) RNA in clinical samples from birds.
Abstract: A real-time reverse-transcription PCR (RRT-PCR) was developed to detect avian paramyxovirus 1 (APMV-1) RNA, also referred to as Newcastle disease virus (NDV), in clinical samples from birds. The assay uses a single-tube protocol with fluorogenic hydrolysis probes. Oligonucleotide primers and probes were designed to detect sequences from a conserved region of the matrix protein (M) gene that recognized a diverse set (n = 44) of APMV-1 isolates. A second primer-probe set was targeted to sequences in the fusion protein (F) gene that code for the cleavage site and detect potentially virulent NDV isolates. A third set, also directed against the M gene, was specific for the North American (N.A.) pre-1960 genotype that includes the common vaccine strains used in commercial poultry in the United States. The APMV-1 M gene, N.A. pre-1960 M gene, and F gene probe sets were capable of detecting approximately 103, 102, and 104 genome copies, respectively, with in vitro-transcribed RNA. Both M gene assays could detect approximately 101 50% egg infective doses (EID50), and the F gene assay could detect approximately 103 EID50. The RRT-PCR test was used to examine clinical samples from chickens experimentally infected with the NDV strain responsible for a recent epizootic in the southwestern United States. Overall, a positive correlation was obtained between the RRT-PCR results and virus isolation for NDV from clinical samples.

442 citations

Journal ArticleDOI
TL;DR: It appears that no single housing system is ideal from a hen welfare perspective and any attempt to evaluate the sustainability of a switch to an alternative housing system requires careful consideration of the merits and shortcomings of each housing system.

402 citations