scispace - formally typeset
Search or ask a question
Author

Daniel J. Lenihan

Other affiliations: Vanderbilt University
Bio: Daniel J. Lenihan is an academic researcher from Vanderbilt University Medical Center. The author has contributed to research in topics: Heart failure & Cardiotoxicity. The author has an hindex of 32, co-authored 140 publications receiving 6193 citations. Previous affiliations of Daniel J. Lenihan include Vanderbilt University.


Papers
More filters
Journal ArticleDOI
TL;DR: This document describes the development and use of angiotensin-converting enzyme, a non-volatile substance that acts as a “spatially aggregating substance” to reduce the chances of heart attack in women.
Abstract: 2-D : two-dimensional 3-D : three-dimensional 5-FU : 5-fluorouracil ACE : angiotensin-converting enzyme ARB : angiotensin II receptor blocker ASE : American Society of Echocardiography BNP : B-type natriuretic peptide CABG : coronary artery bypass graft CAD : coronary artery

1,875 citations

Journal ArticleDOI
TL;DR: No abstract available Keywords: European Society of Cardiology; arrhythmias; cancer therapy; cardio-oncology; cardiotoxicity; chemotherapy; early detection; ischaemia; myocardial dysfunction; surveillance.
Abstract: No abstract available Keywords: European Society of Cardiology; arrhythmias; cancer therapy; cardio-oncology; cardiotoxicity; chemotherapy; early detection; ischaemia; myocardial dysfunction; surveillance.

1,421 citations

Journal ArticleDOI
TL;DR: Recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers were developed by an expert panel with multidisciplinary representation using a systematic review of meta-analyses, randomized clinical trials, observational studies, and clinical experience.
Abstract: Purpose Cardiac dysfunction is a serious adverse effect of certain cancer-directed therapies that can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. The purpose of this effort was to develop recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers. Methods Recommendations were developed by an expert panel with multidisciplinary representation using a systematic review (1996 to 2016) of meta-analyses, randomized clinical trials, observational studies, and clinical experience. Study quality was assessed using established methods, per study design. The guideline recommendations were crafted in part using the Guidelines Into Decision Support methodology. Results A total of 104 studies met eligibility criteria and compose the evidentiary basis for the recommendations. The strength of the recommendations in these guidelines is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. Recommendations It is important for health care providers to initiate the discussion regarding the potential for cardiac dysfunction in individuals in whom the risk is sufficiently high before beginning therapy. Certain higher risk populations of survivors of cancer may benefit from prevention and screening strategies implemented during cancer-directed therapies. Clinical suspicion for cardiac disease should be high and threshold for cardiac evaluation should be low in any survivor who has received potentially cardiotoxic therapy. For certain higher risk survivors of cancer, routine surveillance with cardiac imaging may be warranted after completion of cancer-directed therapy, so that appropriate interventions can be initiated to halt or even reverse the progression of cardiac dysfunction.

782 citations

Journal ArticleDOI
TL;DR: The intent of this American Heart Association (AHA) scientific statement is to summarize the current understanding of dilated cardiomyopathies, with special emphasis on recent developments in diagnostic approaches and therapies for specific cardiologyopathies.
Abstract: The intent of this American Heart Association (AHA) scientific statement is to summarize our current understanding of dilated cardiomyopathies. There is special emphasis on recent developments in diagnostic approaches and therapies for specific cardiomyopathies. Recommendations in this document are based on published studies, published practice guidelines from the American College of Cardiology (ACC)/AHA1 and other organizations,2,3 and the multidisciplinary expertise of the writing group. Existing evidence in epidemiology, classification, diagnosis, and management of specific cardiomyopathies is usually derived from nonrandomized observational studies, registries, case reports, or expert opinion based on clinical experience, not large-scale randomized clinical trials or systematic reviews. Therefore, in this document, rather than using the standard ACC/AHA classification schema of recommendations and level of evidence,4 we have included key management strategies at the end of each section and categorized our recommendations according to the level of consensus. Although the format of our recommendations might resemble the ACC/AHA classification of recommendations used in the ACC/AHA practice guidelines, because of the preponderance of expert opinion or level of evidence C evidence in our document, we elected to use different terminology to provide a distinction from the practice guidelines, in which stronger levels and quality of evidence with randomized clinical trials or meta-analyses are usually present.4 The levels of evidence follow the AHA and ACC methods of classifying the level of certainty of the treatment effect.4 The term dilated cardiomyopathy (DCM) refers to a spectrum of heterogeneous myocardial disorders that are characterized by ventricular dilation and depressed myocardial performance in the absence of hypertension, valvular, congenital, or ischemic heart disease.5 In clinical practice, the pathogenesis of heart failure (HF) has often been placed into 2 categories: ischemic and nonischemic cardiomyopathy. The term nonischemic cardiomyopathy has been interchangeably used with DCM. Although this …

497 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the common cardiovascular issues that may arise during or after cancer therapy, the detection and monitoring of cardiovascular injury, and the best management principles to protect against or minimize cardiotoxicity during the spectrum of cancer treatment strategies.
Abstract: Answer questions and earn CME/CNE Cancer and heart disease are the leading causes of morbidity and mortality in the industrialized world. Modern treatment strategies have led to an improvement in the chances of surviving a diagnosis of cancer; however, these gains can come at a cost. Patients may experience adverse cardiovascular events related to their cancer treatment or as a result of an exacerbation of underlying cardiovascular disease. With longer periods of survival, late effects of cancer treatment may become clinically evident years or decades after completion of therapy. Current cancer therapy incorporates multiple agents whose deleterious cardiac effects may be additive or synergistic. Cardiac dysfunction may result from agents that can result in myocyte destruction, such as with anthracycline use, or from agents that appear to transiently affect left ventricular contractility. In addition, cancer treatment may be associated with other cardiac events, such as severe treatment-induced hypertension and vasospastic and thromboembolic ischemia, as well as rhythm disturbances, including QTc prolongation, that may be rarely life-threatening. Early and late effects of chest radiation can lead to radiation-induced heart disease, including pericardial disease, myocardial fibrosis, cardiomyopathy, coronary artery disease, valvular disease, and arrhythmias, in the setting of myocardial fibrosis. The discipline of cardio-oncology has developed in response to the combined decision making necessary to optimize the care of cancer patients, whether they are receiving active treatment or are long-term survivors. Strategies to prevent or mitigate cardiovascular damage from cancer treatment are needed to provide the best cancer care. This review will focus on the common cardiovascular issues that may arise during or after cancer therapy, the detection and monitoring of cardiovascular injury, and the best management principles to protect against or minimize cardiotoxicity during the spectrum of cancer treatment strategies. CA Cancer J Clin 2016;66:309-325. © 2016 American Cancer Society.

390 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Journal ArticleDOI
TL;DR: ACCF/AHAIAI: angiotensin-converting enzyme inhibitor as discussed by the authors, angio-catabolizing enzyme inhibitor inhibitor inhibitor (ACS inhibitor) is a drug that is used to prevent atrial fibrillation.
Abstract: ACC/AHA : American College of Cardiology/American Heart Association ACCF/AHA : American College of Cardiology Foundation/American Heart Association ACE : angiotensin-converting enzyme ACEI : angiotensin-converting enzyme inhibitor ACS : acute coronary syndrome AF : atrial fibrillation

7,489 citations

Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)
Abstract: ACC/AHA : American College of Cardiology/American Heart Association ACCF/AHA : American College of Cardiology Foundation/American Heart Association ACE : angiotensin-converting enzyme ACEI : angiotensin-converting enzyme inhibitor ACS : acute coronary syndrome AF : atrial fibrillation

6,757 citations