scispace - formally typeset
Search or ask a question
Author

Daniel Jiang

Other affiliations: Daimler AG
Bio: Daniel Jiang is an academic researcher from Mercedes-Benz. The author has contributed to research in topics: Dedicated short-range communications & Communication channel. The author has an hindex of 14, co-authored 17 publications receiving 3771 citations. Previous affiliations of Daniel Jiang include Daimler AG.

Papers
More filters
Proceedings ArticleDOI
11 May 2008
TL;DR: An overview of the latest draft proposed for IEEE 802.11p, named wireless access in vehicular environment, also known as WAVE, is provided to provide an insight into the reasoning and approaches behind the document.
Abstract: Vehicular environments impose a set of new requirements on today's wireless communication systems. Vehicular safety communications applications cannot tolerate long connection establishment delays before being enabled to communicate with other vehicles encountered on the road. Similarly, non-safety applications also demand efficient connection setup with roadside stations providing services (e.g. digital map update) because of the limited time it takes for a car to drive through the coverage area. Additionally, the rapidly moving vehicles and complex roadway environment present challenges at the PHY level. The IEEE 802.11 standard body is currently working on a new amendment, IEEE 802.1 lp, to address these concerns. This document is named wireless access in vehicular environment, also known as WAVE. As of writing, the draft document for IEEE 802.11p is making progress and moving closer towards acceptance by the general IEEE 802.11 working group. It is projected to pass letter ballot in the first half of 2008. This paper provides an overview of the latest draft proposed for IEEE 802.11p. It is intended to provide an insight into the reasoning and approaches behind the document.

1,240 citations

Journal ArticleDOI
TL;DR: This article provides an overview of DSRC based vehicular safety communications and proposes a coherent set of protocols to address these requirements.
Abstract: The automotive industry is moving aggressively in the direction of advanced active safety. Dedicated short-range communication (DSRC) is a key enabling technology for the next generation of communication-based safety applications. One aspect of vehicular safety communication is the routine broadcast of messages among all equipped vehicles. Therefore, channel congestion control and broadcast performance improvement are of particular concern and need to be addressed in the overall protocol design. Furthermore, the explicit multichannel nature of DSRC necessitates a concurrent multichannel operational scheme for safety and non-safety applications. This article provides an overview of DSRC based vehicular safety communications and proposes a coherent set of protocols to address these requirements

623 citations

Proceedings ArticleDOI
23 Oct 2007
TL;DR: A completely revised architecture and design for the IEEE 802.11 MAC and PHY is presented, which models transmission and reception coordination, backoff management and channel state monitoring in a structured and modular manner and provides for a significantly higher level of simulation accuracy.
Abstract: NS-2, with its IEEE 802.11 support, is a widely utilized simulation tool for wireless communications researchers. However, the current NS-2 distribution code has some significant shortcomings both in the overall architecture and the modeling details of the IEEE 802.11 MAC and PHY modules. This paper presents a completely revised architecture and design for these two modules. The resulting PHY is a full featured generic module able to support any single channel frame-based communications (i.e. it is also able to support non-IEEE 802.11 based MAC). The key features include cumulative SINR computation, preamble and PLCP header processing and capture, and frame body capture. The MAC accurately models the basic IEEE 802.11 CSMA/CA mechanism, as required for credible simulation studies. The newly designed MAC models transmission and reception coordination, backoff management and channel state monitoring in a structured and modular manner. In turn, the contributions of this paper make extending the MAC for protocol researches much easier and provide for a significantly higher level of simulation accuracy.

432 citations

Proceedings ArticleDOI
01 Oct 2004
TL;DR: The results indicate that the proper design of repetition or multi-hop retransmission strategies represents an important aspect of future work for robustness and network stability of vehicular ad hoc networks.
Abstract: One key usage of VANET is to support vehicle safety applications. This use case is characterized by the prominence of broadcasts in scaled settings. In this context, we try to answer the following questions: i) what is the probability of reception of a broadcast message by another car depending on its distance to the sender, ii) how to give priority access and an improved reception rate for important warnings, e.g., sent out in an emergency situation, and iii) how are the above two results affected by signal strength fluctuations caused by radio channel fading? We quantify via simulation the probability of reception for the two-ray-ground propagation model as well as for the Nakagami distribution in saturated environments. By making use of some IEEE 802.11e EDCA mechanisms for priority access, we do not only quantify how channel access times can be reduced but also demonstrate how improved reception rates can be achieved. Our results show that the mechanisms for priority access are successful under the two-way-ground model. However, with a non-deterministic radio propagation model like Nakagami's distribution the benefit is still obvious but the general level of probability of reception is much smaller compared to two-ray-ground model. The results indicate that -- particularly for safety-critical and sensor network type of applications -- the proper design of repetition or multi-hop retransmission strategies represents an important aspect of future work for robustness and network stability of vehicular ad hoc networks.

416 citations

Proceedings ArticleDOI
29 Dec 2011
TL;DR: A design methodology for congestion control in VSC as well as the description and evaluation of a resulting rate adaption oriented protocol named PULSAR, showing that “details matter” with respect to the temporal and spatial dimensions of the protocol outcome.
Abstract: Vehicle Safety Communications (VSC) is advancing rapidly towards product development and field testing. While a number of possible solutions have been proposed, the question remains open as how such a system will address the issue of scalability in its actual deployment. This paper presents a design methodology for congestion control in VSC as well as the description and evaluation of a resulting rate adaption oriented protocol named PULSAR. We start with a list of design principles reflecting the state of the art that define why and how vehicles should behave while responding to channel congestion in order to ensure fairness and support the needs of safety applications. From these principles, we derive protocol building blocks required to fulfill the defined objectives. Then, the actual protocol is described and assessed in detail, including a discussion on the intricate features of channel load assessment, rate adaptation and information sharing. A comparison with other state-of-the-art protocols shows that “details matter” with respect to the temporal and spatial dimensions of the protocol outcome.

206 citations


Cited by
More filters
Journal ArticleDOI
John Kenney1
16 Jun 2011
TL;DR: The content and status of the DSRC standards being developed for deployment in the United States are explained, including insights into why specific technical solutions are being adopted, and key challenges remaining for successful DSRC deployment.
Abstract: Wireless vehicular communication has the potential to enable a host of new applications, the most important of which are a class of safety applications that can prevent collisions and save thousands of lives. The automotive industry is working to develop the dedicated short-range communication (DSRC) technology, for use in vehicle-to-vehicle and vehicle-to-roadside communication. The effectiveness of this technology is highly dependent on cooperative standards for interoperability. This paper explains the content and status of the DSRC standards being developed for deployment in the United States. Included in the discussion are the IEEE 802.11p amendment for wireless access in vehicular environments (WAVE), the IEEE 1609.2, 1609.3, and 1609.4 standards for Security, Network Services and Multi-Channel Operation, the SAE J2735 Message Set Dictionary, and the emerging SAE J2945.1 Communication Minimum Performance Requirements standard. The paper shows how these standards fit together to provide a comprehensive solution for DSRC. Most of the key standards are either recently published or expected to be completed in the coming year. A reader will gain a thorough understanding of DSRC technology for vehicular communication, including insights into why specific technical solutions are being adopted, and key challenges remaining for successful DSRC deployment. The U.S. Department of Transportation is planning to decide in 2013 whether to require DSRC equipment in new vehicles.

1,866 citations

Journal ArticleDOI
TL;DR: An overview of the field of vehicular ad hoc networks is given, providing motivations, challenges, and a snapshot of proposed solutions.
Abstract: There has been significant interest and progress in the field of vehicular ad hoc networks over the last several years. VANETs comprise vehicle-to-vehicle and vehicle-to-infrastructure communications based on wireless local area network technologies. The distinctive set of candidate applications (e.g., collision warning and local traffic information for drivers), resources (licensed spectrum, rechargeable power source), and the environment (e.g., vehicular traffic flow patterns, privacy concerns) make the VANET a unique area of wireless communication. This article gives an overview of the field, providing motivations, challenges, and a snapshot of proposed solutions.

1,545 citations

Journal ArticleDOI
TL;DR: The basic characteristics of vehicular networks are introduced, an overview of applications and associated requirements, along with challenges and their proposed solutions are provided, and the current and past major ITS programs and projects in the USA, Japan and Europe are provided.
Abstract: Vehicular networking has significant potential to enable diverse applications associated with traffic safety, traffic efficiency and infotainment. In this survey and tutorial paper we introduce the basic characteristics of vehicular networks, provide an overview of applications and associated requirements, along with challenges and their proposed solutions. In addition, we provide an overview of the current and past major ITS programs and projects in the USA, Japan and Europe. Moreover, vehicular networking architectures and protocol suites employed in such programs and projects in USA, Japan and Europe are discussed.

1,422 citations

Journal ArticleDOI
TL;DR: In this article, the authors present aspects related to this field to help researchers and developers to understand and distinguish the main features surrounding VANET in one solid document, without the need to go through other relevant papers and articles.

1,216 citations

Journal ArticleDOI
TL;DR: Some of the VANET research challenges that still need to be addressed to enable the ubiquitous deployment and widespead adoption of scalable, reliable, robust, and secure VANet architectures, protocols, technologies, and services are outlined.
Abstract: Recent advances in hardware, software, and communication technologies are enabling the design and implementation of a whole range of different types of networks that are being deployed in various environments. One such network that has received a lot of interest in the last couple of years is the Vehicular Ad-Hoc Network (VANET). VANET has become an active area of research, standardization, and development because it has tremendous potential to improve vehicle and road safety, traffic efficiency, and convenience as well as comfort to both drivers and passengers. Recent research efforts have placed a strong emphasis on novel VANET design architectures and implementations. A lot of VANET research work have focused on specific areas including routing, broadcasting, Quality of Service (QoS), and security. We survey some of the recent research results in these areas. We present a review of wireless access standards for VANETs, and describe some of the recent VANET trials and deployments in the US, Japan, and the European Union. In addition, we also briefly present some of the simulators currently available to VANET researchers for VANET simulations and we assess their benefits and limitations. Finally, we outline some of the VANET research challenges that still need to be addressed to enable the ubiquitous deployment and widespead adoption of scalable, reliable, robust, and secure VANET architectures, protocols, technologies, and services.

1,132 citations