scispace - formally typeset
Search or ask a question
Author

Daniel K. C. So

Bio: Daniel K. C. So is an academic researcher from University of Manchester. The author has contributed to research in topics: MIMO & Optimization problem. The author has an hindex of 22, co-authored 117 publications receiving 1557 citations. Previous affiliations of Daniel K. C. So include Hong Kong University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A dual-layer algorithm where Dinkelbach method is employed both in the inner layer to optimize the power allocation and in the outer layer to control the time switching assignment is developed and demonstrated that significant performance gain over orthogonal multiple access scheme in terms of EE can be achieved in a SWIPT-enabled NOMA system.
Abstract: The combination of simultaneous wireless information and power transfer (SWIPT) and non-orthogonal multiple access (NOMA) is a potential solution to improve spectral efficiency and energy efficiency (EE) of the upcoming fifth generation (5G) networks, especially in order to support the functionality of the Internet of things (IoT) and the massive machine-type communications (mMTC) scenarios. In this paper, we investigate joint power allocation and time switching (TS) control for EE optimization in a TS-based SWIPT NOMA system. Our aim is to optimize the EE of the system whilst satisfying the constraints on maximum transmit power budget, minimum data rate, and minimum harvested energy per terminal. The considered EE optimization problem is neither linear nor convex involving joint optimization of power allocation and time switching factors and, thus, is extremely difficult to solve directly. In order to tackle this problem, we develop a dual-layer algorithm where Dinkelbach method is employed both in the inner layer to optimize the power allocation and in the outer layer to control the time switching assignment. Furthermore, a simplified but practical special case with equal time switching factors in all terminals is considered. Numerical results validate the theoretical findings and demonstrate that significant performance gain over orthogonal multiple access scheme in terms of EE can be achieved by the proposed algorithms in a SWIPT-enabled NOMA system.

160 citations

Journal ArticleDOI
TL;DR: This paper proposes a new paradigm for EE-SE tradeoff, namely the resource efficiency (RE) for orthogonal frequency division multiple access (OFDMA) cellular network in which it is taken into consideration different transmission-bandwidth requirements and proposes an upper bound near optimal method to jointly solve the optimization problem.
Abstract: Spectral efficiency (SE) and energy efficiency (EE) are the main metrics for designing wireless networks. Rather than focusing on either SE or EE separately, recent works have focused on the relationship between EE and SE and provided good insight into the joint EE-SE tradeoff. However, such works have assumed that the bandwidth was fully occupied regardless of the transmission requirements and therefore are only valid for this type of scenario. In this paper, we propose a new paradigm for EE-SE tradeoff, namely the resource efficiency (RE) for orthogonal frequency division multiple access (OFDMA) cellular network in which we take into consideration different transmission-bandwidth requirements. We analyse the properties of the proposed RE and prove that it is capable of exploiting the tradeoff between EE and SE by balancing consumption power and occupied bandwidth; hence simultaneously optimizing both EE and SE. We then formulate the generalized RE optimization problem with guaranteed quality of service (QoS) and provide a gradient based optimal power adaptation scheme to solve it. We also provide an upper bound near optimal method to jointly solve the optimization problem. Furthermore, a low-complexity suboptimal algorithm based on a uniform power allocation scheme is proposed to reduce the complexity. Numerical results confirm the analytical findings and demonstrate the effectiveness of the proposed resource allocation schemes for efficient resource usage.

137 citations

Journal ArticleDOI
TL;DR: This paper addresses the EE optimization problem for downlink two-tier HetNets comprised of a single macro-cell and multiple pico-cells and proposes a two-layer resource allocation algorithm based on the quasiconcavity property of EE.
Abstract: Heterogeneous network (HetNet) deployment is considered a de facto solution for meeting the ever increasing mobile traffic demand. However, excessive power usage in such networks is a critical issue, particularly for mobile operators. Characterizing the fundamental energy efficiency (EE) performance of HetNets is therefore important for the design of green wireless systems. In this paper, we address the EE optimization problem for downlink two-tier HetNets comprised of a single macro-cell and multiple pico-cells. Considering a heterogeneous real-time and non-real-time traffic, transmit beamforming design and power allocation policies are jointly considered in order to optimize the system energy efficiency. The EE resource allocation problem under consideration is a mixed combinatorial and non-convex optimization problem, which is extremely difficult to solve. In order to reduce the computational complexity, we decompose the original problem with multiple inequality constraints into multiple optimization problems with single inequality constraint. For the latter problem, a two-layer resource allocation algorithm is proposed based on the quasiconcavity property of EE. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation algorithm can efficiently approach the optimal EE.

110 citations

Journal ArticleDOI
TL;DR: The joint downlink resource allocation problem for a SWIPT-enabled MC-NOMA system with time switching-based receivers is investigated, where pattern division multiple access (PDMA) technique is employed.
Abstract: Simultaneous wireless information and power transfer (SWIPT) and multi-carrier non-orthogonal multiple access (MC-NOMA) are promising technologies for future fifth generation and beyond wireless networks due to their potential capabilities in energy-efficient and spectrum-efficient system designs, respectively. In this paper, the joint downlink resource allocation problem for a SWIPT-enabled MC-NOMA system with time switching-based receivers is investigated, where pattern division multiple access (PDMA) technique is employed. We focus on minimizing the total transmit power of the system while satisfying the quality-of-service requirements of each user in terms of data rate and harvested power. The corresponding optimization problem is a non-convex and a mixed integer programming problem which is difficult to solve. Different from the conventional iterative searching-based algorithms, we propose an efficient deep learning-based approach to determine an approximated optimal solution. Specifically, we employ a typical class of deep learning model, namely, deep belief network (DBN), where the detailed procedure of the developed approach consists of three parts, i.e., data preparation, training, and running. The simulation results demonstrate that the proposed DBN-based approach can achieve similar performance of power consumption to the exhaustive search method. Furthermore, the results also confirm that MC-NOMA with PDMA outperforms MC-NOMA with sparse code multiple access, single-carrier non-orthogonal multiple access, and orthogonal frequency division multiple access in terms of power consumption in SWIPT-enabled systems.

107 citations

Journal ArticleDOI
01 Aug 2018
TL;DR: Numerical results confirm the effectiveness of the proposed algorithms and illustrate that significant performance gain in terms of EE can be achieved by adopting the proposed extended BC-MAC duality-based algorithm.
Abstract: Simultaneous wireless information and power transfer (SWIPT) is anticipated to have great applications in 5G communication systems and the Internet of Things. In this paper, we address the energy efficiency (EE) optimization problem for SWIPT multiple-input multiple-output broadcast channel (BC) with time-switching (TS) receiver design. Our aim is to maximize the EE of the system whilst satisfying certain constraints in terms of maximum transmit power and minimum harvested energy per user. The coupling of the optimization variables, namely transmit covariance matrices and TS ratios, leads to an EE problem which is nonconvex, and hence very difficult to solve directly. Hence, we transform the original maximization problem with multiple constraints into a suboptimal min–max problem with a single constraint and multiple auxiliary variables. We propose a dual inner/outer layer resource allocation framework to tackle the problem. For the inner-layer, we invoke an extended SWIPT-based BC-multiple access channel (MAC) duality approach and provide two iterative resource allocation schemes under fixed auxiliary variables for solving the dual MAC problem. A subgradient searching scheme is then proposed for the outer-layer in order to obtain the optimal auxiliary variables. Numerical results confirm the effectiveness of the proposed algorithms and illustrate that significant performance gain in terms of EE can be achieved by adopting the proposed extended BC-MAC duality-based algorithm.

94 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: An overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems is presented and the state of the art in channel modeling and measurements is presented, leading to a better understanding of actual MIMO gains.
Abstract: This paper presents an overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space-time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.

2,488 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of self-interference mitigation techniques for in-band full-duplex (IBFD) wireless systems and discuss the challenges and opportunities in the design and analysis of IBFD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. One of the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference that the modem's transmitter causes to its own receiver. This tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,752 citations

Posted Content
TL;DR: This tutorial surveys a wide range of IBFD self-interference mitigation techniques and discusses numerous other research challenges and opportunities in the design and analysis of IB FD wireless systems.
Abstract: In-band full-duplex (IBFD) operation has emerged as an attractive solution for increasing the throughput of wireless communication systems and networks. With IBFD, a wireless terminal is allowed to transmit and receive simultaneously in the same frequency band. This tutorial paper reviews the main concepts of IBFD wireless. Because one the biggest practical impediments to IBFD operation is the presence of self-interference, i.e., the interference caused by an IBFD node's own transmissions to its desired receptions, this tutorial surveys a wide range of IBFD self-interference mitigation techniques. Also discussed are numerous other research challenges and opportunities in the design and analysis of IBFD wireless systems.

1,549 citations

Journal ArticleDOI
TL;DR: The current research state-of-the-art of 5G IoT, key enabling technologies, and main research trends and challenges in5G IoT are reviewed.

992 citations