scispace - formally typeset
Search or ask a question
Author

Daniel M. Gorman

Other affiliations: Merck & Co.
Bio: Daniel M. Gorman is an academic researcher from Schering-Plough. The author has contributed to research in topics: Nucleic acid & Cytokine. The author has an hindex of 29, co-authored 84 publications receiving 18215 citations. Previous affiliations of Daniel M. Gorman include Merck & Co..


Papers
More filters
Journal ArticleDOI
01 Nov 2005-Immunity
TL;DR: A member of theIL-1 family, IL-33, which mediates its biological effects via IL-1 receptor ST 2, activates NF-kappaB and MAP kinases, and drives production of T(H)2-associated cytokines from in vitro polarized T( H)2 cells is reported.

3,306 citations

Journal ArticleDOI
13 Feb 2003-Nature
TL;DR: It is shown that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL- 12, is the critical factor in this response.
Abstract: Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.

2,915 citations

Journal ArticleDOI
01 Nov 2000-Immunity
TL;DR: Human IL-23 stimulates IFN-gamma production and proliferation in PHA blast T cells, as well as in CD45RO (memory) T cells and induces strong proliferation of mouse memory T cells.

2,823 citations

Journal ArticleDOI
TL;DR: It is shown that human thymic stromal lymphopoietin (TSLP) potently activated CD11c+ dendritic cells (DCs) and induced production of the TH2-attracting chemokines TARC (thymus and activation-regulated chemokine) and MDC (macrophage-derivedChemokine; CCL22).
Abstract: Whether epithelial cells play a role in triggering the immune cascade leading to T helper 2 (T(H)2)-type allergic inflammation is not known. We show here that human thymic stromal lymphopoietin (TSLP) potently activated CD11c(+) dendritic cells (DCs) and induced production of the T(H)2-attracting chemokines TARC (thymus and activation-regulated chemokine; also known as CCL17) and MDC (macrophage-derived chemokine; CCL22). TSLP-activated DCs primed naive T(H) cells to produce the proallergic cytokines interleukin 4 (IL-4), IL-5, IL-13 and tumor necrosis factor-alpha, while down-regulating IL-10 and interferon-gamma. TSLP was highly expressed by epithelial cells, especially keratinocytes from patients with atopic dermatitis. TSLP expression was associated with Langerhans cell migration and activation in situ. These findings shed new light on the function of human TSLP and the role played by epithelial cells and DCs in initiating allergic inflammation.

1,980 citations

Journal ArticleDOI
01 Jun 2002-Immunity
TL;DR: A new heterodimeric cytokine termed IL-27 is described that consists of EBI3, an IL-12p40-related protein, and p28, a newly discovered IL- 12p35-related polypeptide and drives rapid clonal expansion of naive but not memory CD4(+) T cells.

1,379 citations


Cited by
More filters
Journal ArticleDOI
11 May 2006-Nature
TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Abstract: On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.

6,643 citations

Journal ArticleDOI
TL;DR: The evidence in favour of alternative macrophage activation by the TH2-type cytokines interleukin-4 (IL-4) and IL-13 is assessed, and its limits and relevance to a range of immune and inflammatory conditions are defined.
Abstract: The classical pathway of interferon-gamma-dependent activation of macrophages by T helper 1 (T(H)1)-type responses is a well-established feature of cellular immunity to infection with intracellular pathogens, such as Mycobacterium tuberculosis and HIV. The concept of an alternative pathway of macrophage activation by the T(H)2-type cytokines interleukin-4 (IL-4) and IL-13 has gained credence in the past decade, to account for a distinctive macrophage phenotype that is consistent with a different role in humoral immunity and repair. In this review, I assess the evidence in favour of alternative macrophage activation in the light of macrophage heterogeneity, and define its limits and relevance to a range of immune and inflammatory conditions.

5,930 citations

Journal ArticleDOI
22 Sep 2006-Cell
TL;DR: It is shown that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage of proinflammatory T helper cells and its potential as a therapeutic target in inflammatory diseases is highlighted.

4,616 citations

Journal ArticleDOI
TL;DR: Findings provide a basis for understanding how inhibition of IFN-γ signaling enhances development of pathogenic TH-17 effector cells that can exacerbate autoimmunity.
Abstract: CD4(+) T cells producing interleukin 17 (IL-17) are associated with autoimmunity, although the precise mechanisms that control their development are undefined. Here we present data that challenge the idea of a shared developmental pathway with T helper type 1 (T(H)1) or T(H)2 lineages and instead favor the idea of a distinct effector lineage we call 'T(H)-17'. The development of T(H)-17 cells from naive precursor cells was potently inhibited by interferon-gamma (IFN-gamma) and IL-4, whereas committed T(H)-17 cells were resistant to suppression by T(H)1 or T(H)2 cytokines. In the absence of IFN-gamma and IL-4, IL-23 induced naive precursor cells to differentiate into T(H)-17 cells independently of the transcription factors STAT1, T-bet, STAT4 and STAT6. These findings provide a basis for understanding how inhibition of IFN-gamma signaling enhances development of pathogenic T(H)-17 effector cells that can exacerbate autoimmunity.

4,616 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations