scispace - formally typeset
Search or ask a question
Author

Daniel M. Jarvie

Bio: Daniel M. Jarvie is an academic researcher from Texas Christian University. The author has contributed to research in topics: Oil shale & Source rock. The author has an hindex of 13, co-authored 16 publications receiving 5592 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 × 10 9 m 3 /1.73 × 10 4 m 3 ). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m 3 /m 3 ). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

2,418 citations

Journal ArticleDOI
TL;DR: In this article, the authors used scanning electron microscopy to characterize the pore system in the Barnett Shale of the Fort Worth Basin, Texas, showing that the pores in these rocks are dominantly nanometer in scale (nanopores).
Abstract: Research on mudrock attributes has increased dramatically since shale-gas systems have become commercial hydrocarbon production targets. One of the most significant research questions now being asked focuses on the nature of the pore system in these mudrocks. Our work on siliceous mudstones from the Mississippian Barnett Shale of the Fort Worth Basin, Texas, shows that the pores in these rocks are dominantly nanometer in scale (nanopores). We used scanning electron microscopy to characterize Barnett pores from a number of cores and have imaged pores as small as 5 nm. Key to our success in imaging these nanopores is the use of Ar-ion-beam milling; this methodology provides flat surfaces that lack topography related to differential hardness and are fundamental for high-magnification imaging. Nanopores are observed in three main modes of occurrence. Most pores are found in grains of organic matter as intraparticle pores; many of these grains contain hundreds of pores. Intraparticle organic nanopores most commonly have irregular, bubblelike, elliptical cross sections and range between 5 and 750 nm with the median nanopore size for all grains being approximately 100 nm. Internal porosities of up to 20.2% have been measured for whole grains of organic matter based on point-count data from scanning electron microscopy analysis. These nanopores in the organic matter are the predominant pore type in the Barnett mudstones and they are related to thermal maturation. Nanopores are also found in bedding-parallel, wispy, organic-rich laminae as intraparticle pores in organic grains and as interparticle pores between organic matter, but this mode is not common. Although less abundant, nanopores are also locally present in fine-grained matrix areas unassociated with organic matter and as nano- to microintercrystalline pores in pyrite framboids. Intraparticle organic nanopores and pyrite-framboid intercrystalline pores contribute to gas storage in Barnett mudstones. We postulate that permeability pathways within the Barnett mudstones are along bedding-parallel layers of organic matter or a mesh network of organic matter flakes because this material contains the most pores.

2,295 citations

Journal ArticleDOI
TL;DR: The most active field in Texas is the Newark East field as discussed by the authors, which is 400 mi 2 (1036 km 2 ) in extent, with more than 2340 producing wells and about 2.7 tcf of booked gas reserves.
Abstract: The Mississippian Barnett Shale serves as source, seal, and reservoir to a world-class unconventional natural-gas accumulation in the Fort Worth basin of north-central Texas. The formation is a lithologically complex interval of low permeability that requires artificial stimulation to produce. At present, production is mainly confined to a limited portion of the northern basin where the Barnett Shale is relatively thick (>300 ft; >92 m), organic rich (presentday total organic carbon > 3.0%), thermally mature (vitrinite reflectance > 1.1%), and enclosed by dense limestone units able to contain induced fractures. The most actively drilled area is Newark East field, currently the largest gas field in Texas. Newark East is 400 mi 2 (1036 km 2 ) in extent, with more than 2340 producing wells and about 2.7 tcf of booked gas reserves. Cumulative gas production from Barnett Shale wells through 2003 was about 0.8 tcf. Wells in Newark East field typically produce from depths of 7500 ft (2285 m) at rates ranging from 0.5 to more than 4 mmcf/day. Estimated ultimate recoveries per well range from 0.75 to as high as 7.0 bcf. Efforts to extend the current Barnett play beyond the field limits have encountered several challenges, including westward and northward increases in oil saturation and the absence of lithologic barriers to induced fracture growth. Patterns of oil and gas occurrence in the Barnett, in conjunction with maturation and burial-history data, indicate a complex, multiphased thermal evolution, with episodic expulsion of hydrocarbons and secondary cracking of primary oils to gas

794 citations

Journal ArticleDOI
TL;DR: In this paper, the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin were described.
Abstract: This article describes the primary geologic characteristics and criteria of the Barnett Shale and Barnett-Paleozoic total petroleum system (TPS) of the Fort Worth Basin used to define two geographic areas of the Barnett Shale for petroleum resource assessment. From these two areas, referred to as assessment units, the U.S. Geological Survey estimated a mean volume of about 26 tcf of undiscovered, technically recoverable hydrocarbon gas in the Barnett Shale. The Mississippian Barnett Shale is the primary source rock for oil and gas produced from Paleozoic reservoir rocks in the Bend arch–Fort Worth Basin area and is also one of the most significant gas-producing formations in Texas. Subsurface mapping from well logs and commercial databases and petroleum geochemistry demonstrate that the Barnett Shale is organic rich and thermally mature for hydrocarbon generation over most of the Bend arch–Fort Worth Basin area. In the northeastern and structurally deepest part of the Fort Worth Basin adjacent to the Muenster arch, the formation is more than 1000 ft (305 m) thick and interbedded with thick limestone units; westward, it thins rapidly over the Mississippian Chappel shelf to only a few tens of feet. The Barnett-Paleozoic TPS is identified where thermally mature Barnett Shale has generated large volumes of hydrocarbons and is (1) contained within the Barnett Shale unconventional continuous accumulation and (2) expelled and distributed among numerous conventional clastic- and carbonate-rock reservoirs of Paleozoic age. Vitrinite reflectance (Ro) measurements show little correlation with present-day burial depth. Contours of equal Ro values measured from Barnett Shale and typing of produced hydrocarbons indicate significant uplift and erosion. Furthermore, the thermal history of the formation was enhanced by hydrothermal events along the Ouachita thrust front and Mineral Wells–Newark East fault system. Stratigraphy and thermal maturity define two gas-producing assessment units for the Barnett Shale: (1) a greater Newark East fracture-barrier continuous Barnett Shale gas assessment unit, encompassing an area of optimal gas production where dense impermeable limestones enclose thick (300 ft; 91 m) Barnett Shale that is within the gas-generation window (Ro 1.1%); and (2) an extended continuous Barnett Shale gas assessment unit covering an area where the Barnett Shale is within the gas-generation window, but is less than 300 ft (91 m) thick, and either one or both of the overlying and underlying limestone barriers are absent.

296 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the marine Mississippian Barnett Shale is the primary source rock for petroleum in the Fort Worth Basin, although contributions from other sources are possible.
Abstract: Detailed biomarker and light hydrocarbon geochemistry confirm that the marine Mississippian Barnett Shale is the primary source rock for petroleum in the Fort Worth Basin, north-central Texas, although contributions from other sources are possible. Biomarker data indicate that the main oil-generating Barnett Shale facies is marine and was deposited under dysoxic, strong upwelling, normal salinity conditions. The analysis of two outcrop samples and cuttings from seven wells indicates variability in the Barnett Shale organic facies and a possibility of other oil subfamilies being present. Light hydrocarbon analyses reveal significant terrigenous-sourced condensate input to some reservoirs, resulting in terrigenous and mixed marine-terrigenous light hydrocarbon signatures for many oils. The light hydrocarbon data suggest a secondary, condensate-generating source facies containing terrigenous or mixed terrigenous-marine organic matter. This indication of a secondary source rock that is not revealed by biomarker analysis emphasizes the importance of integrating biomarker and light hydrocarbon data to define petroleum source rocks. Gases in the Fort Worth Basin are thermogenic in origin and appear to be cogenerated with oil from the Barnett Shale, although some gas may also originate by oil cracking. Isotope data indicate minor contribution of biogenic gas. Except for reservoirs in the Pennsylvanian Bend Group, which contain gases spanning the complete range of observed maturities, the gases appear to be stratigraphically segregated, younger reservoirs contain less mature gas, and older reservoirs contain more mature gas. We cannot rule out the possibility that other source units within the Fort Worth Basin, such as the Smithwick Shale, are locally important petroleum sources.

245 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 × 10 9 m 3 /1.73 × 10 4 m 3 ). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m 3 /m 3 ). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

2,418 citations

Journal ArticleDOI
TL;DR: In this article, the authors used scanning electron microscopy to characterize the pore system in the Barnett Shale of the Fort Worth Basin, Texas, showing that the pores in these rocks are dominantly nanometer in scale (nanopores).
Abstract: Research on mudrock attributes has increased dramatically since shale-gas systems have become commercial hydrocarbon production targets. One of the most significant research questions now being asked focuses on the nature of the pore system in these mudrocks. Our work on siliceous mudstones from the Mississippian Barnett Shale of the Fort Worth Basin, Texas, shows that the pores in these rocks are dominantly nanometer in scale (nanopores). We used scanning electron microscopy to characterize Barnett pores from a number of cores and have imaged pores as small as 5 nm. Key to our success in imaging these nanopores is the use of Ar-ion-beam milling; this methodology provides flat surfaces that lack topography related to differential hardness and are fundamental for high-magnification imaging. Nanopores are observed in three main modes of occurrence. Most pores are found in grains of organic matter as intraparticle pores; many of these grains contain hundreds of pores. Intraparticle organic nanopores most commonly have irregular, bubblelike, elliptical cross sections and range between 5 and 750 nm with the median nanopore size for all grains being approximately 100 nm. Internal porosities of up to 20.2% have been measured for whole grains of organic matter based on point-count data from scanning electron microscopy analysis. These nanopores in the organic matter are the predominant pore type in the Barnett mudstones and they are related to thermal maturation. Nanopores are also found in bedding-parallel, wispy, organic-rich laminae as intraparticle pores in organic grains and as interparticle pores between organic matter, but this mode is not common. Although less abundant, nanopores are also locally present in fine-grained matrix areas unassociated with organic matter and as nano- to microintercrystalline pores in pyrite framboids. Intraparticle organic nanopores and pyrite-framboid intercrystalline pores contribute to gas storage in Barnett mudstones. We postulate that permeability pathways within the Barnett mudstones are along bedding-parallel layers of organic matter or a mesh network of organic matter flakes because this material contains the most pores.

2,295 citations

Journal ArticleDOI
TL;DR: In this paper, a pore classification consisting of three major matrix-related pore types is presented that can be used to quantify matrix related pore and relate them to pore networks.
Abstract: Matrix-related pore networks in mudrocks are composed of nanometer- to micrometer-size pores. In shale-gas systems, these pores, along with natural fractures, form the flow-path (permeability) network that allows flow of gas from the mudrock to induced fractures during production. A pore classification consisting of three major matrix-related pore types is presented that can be used to quantify matrix-related pores and relate them to pore networks. Two pore types are associated with the mineral matrix; the third pore type is associated with organic matter (OM). Fracture pores are not controlled by individual matrix particles and are not part of this classification. Pores associated with mineral particles can be subdivided into interparticle (interP) pores that are found between particles and crystals and intraparticle (intraP) pores that are located within particles. Organic-matter pores are intraP pores located within OM. Interparticle mineral pores have a higher probability of being part of an effective pore network than intraP mineral pores because they are more likely to be interconnected. Although they are intraP, OM pores are also likely to be part of an interconnected network because of the interconnectivity of OM particles. In unlithifed near-surface muds, pores consist of interP and intraP pores, and as the muds are buried, they compact and lithify. During the compaction process, a large number of interP and intraP pores are destroyed, especially in ductile grain-rich muds. Compaction can decrease the pore volume up to 88% by several kilometers of burial. At the onset of hydrocarbon thermal maturation, OM pores are created in kerogen. At depth, dissolution of chemically unstable particles can create additional moldic intraP pores.

1,895 citations

Journal ArticleDOI
TL;DR: The effect of shale composition and fabric upon pore structure and CH 4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB) as mentioned in this paper.

1,749 citations

MonographDOI
09 Jan 2020
TL;DR: The third edition of the reference book as discussed by the authors has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results, and highlights applications in unconventional reservoirs, including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates.
Abstract: Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.

1,387 citations