scispace - formally typeset
Search or ask a question
Author

Daniel M. Sigman

Bio: Daniel M. Sigman is an academic researcher from Princeton University. The author has contributed to research in topics: Nitrate & Glacial period. The author has an hindex of 81, co-authored 222 publications receiving 27281 citations. Previous affiliations of Daniel M. Sigman include Woods Hole Oceanographic Institution & École normale supérieure de Lyon.


Papers
More filters
Journal ArticleDOI
17 Aug 2001-Science
TL;DR: The Cariaco Basin record exhibits strong correlations with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global teleconnections among regional climates.
Abstract: Titanium and iron concentration data from the anoxic Cariaco Basin, off the Venezuelan coast, can be used to infer variations in the hydrological cycle over northern South America during the past 14,000 years with subdecadal resolution. Following a dry Younger Dryas, a period of increased precipitation and riverine discharge occurred during the Holocene “thermal maximum.” Since ∼5400 years ago, a trend toward drier conditions is evident from the data, with high-amplitude fluctuations and precipitation minima during the time interval 3800 to 2800 years ago and during the “Little Ice Age.” These regional changes in precipitation are best explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ), potentially driven by Pacific-based climate variability. The Cariaco Basin record exhibits strong correlations with climate records from distant regions, including the high-latitude Northern Hemisphere, providing evidence for global teleconnections among regional climates.

2,032 citations

Journal ArticleDOI
TL;DR: The precision of the method is better than 0.2/1000 (1 SD) at concentrations of nitrate down to 1 microM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced.
Abstract: We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N2O) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and oxygen from nitrate are accessible in this way. In this first of two companion manuscripts, we describe the basic protocol and results for the nitrogen isotopes. The precision of the method is better than 0.2‰ (1 SD) at concentrations of nitrate down to 1 μM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced. For samples with 1 μM nitrate or more, the blank of the method is less than 10% of the signal size, and various approaches may reduce it further.

1,562 citations

Journal ArticleDOI
TL;DR: A novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater with higher sensitivity, lack of interference by other solutes, and ease of sample preparation is reported.
Abstract: We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate.1 Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N2O analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N2O product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consi...

1,291 citations

Journal ArticleDOI
19 Oct 2000-Nature
TL;DR: A version of the hypothesis that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting is presented.
Abstract: Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's 'biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more efficient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region.

1,273 citations

Journal ArticleDOI
04 Jan 2007-Nature
TL;DR: High-resolution records of the magnetic properties and the titanium content of the sediments of Lake Huguang Maar in coastal southeast China over the past 16,000 years are presented, using as proxies for the strength of the winter monsoon winds, to suggest that these migrations in the tropical rain belt could have contributed to the declines of both the Tang dynasty in China and the Classic Maya in Central America.
Abstract: A palaeoclimate record spanning the past 16,000 years with nearly annual time resolution has been obtained from Lake Huguang Maar in China. The magnetic properties and titanium content of the lake sediments are thought to reflect changes in the East Asian winter monsoon strength, thus providing a complement to palaeoclimate archives that record the strength of the rain-bearing summer monsoon. The records point to an anti-correlation between winter and summer monsoon strength, best explained by migration of the intertropical convergence zone (ITCZ), a belt of low-pressure air at the Equator. Interestingly, the decline of China's Tang dynasty and the Mayan civilization broadly coincide with drought periods recorded in Lake Huguang Maar and Cariaco basin sediments, respectively. Did major shifts in the position of the ITCZ catalyse simultaneous events in civilizations on opposite sides of the Pacific Ocean? The Asian–Australian monsoon is an important component of the Earth’s climate system that influences the societal and economic activity of roughly half the world’s population. The past strength of the rain-bearing East Asian summer monsoon can be reconstructed with archives such as cave deposits1,2,3, but the winter monsoon has no such signature in the hydrological cycle and has thus proved difficult to reconstruct. Here we present high-resolution records of the magnetic properties and the titanium content of the sediments of Lake Huguang Maar in coastal southeast China over the past 16,000 years, which we use as proxies for the strength of the winter monsoon winds. We find evidence for stronger winter monsoon winds before the Bolling–Allerod warming, during the Younger Dryas episode and during the middle and late Holocene, when cave stalagmites suggest weaker summer monsoons1,2,3. We conclude that this anticorrelation is best explained by migrations in the intertropical convergence zone. Similar migrations of the intertropical convergence zone have been observed in Central America for the period ad 700 to 900 (refs 4–6), suggesting global climatic changes at that time. From the coincidence in timing, we suggest that these migrations in the tropical rain belt could have contributed to the declines of both the Tang dynasty in China and the Classic Maya in Central America.

810 citations


Cited by
More filters
Journal ArticleDOI
22 Jun 2000-Nature
TL;DR: The present genetic structure of populations, species and communities has been mainly formed by Quaternary ice ages, and genetic, fossil and physical data combined can greatly help understanding of how organisms were so affected.
Abstract: Global climate has fluctuated greatly during the past three million years, leading to the recent major ice ages. An inescapable consequence for most living organisms is great changes in their distribution, which are expressed differently in boreal, temperate and tropical zones. Such range changes can be expected to have genetic consequences, and the advent of DNA technology provides most suitable markers to examine these. Several good data sets are now available, which provide tests of expectations, insights into species colonization and unexpected genetic subdivision and mixture of species. The genetic structure of human populations may be viewed in the same context. The present genetic structure of populations, species and communities has been mainly formed by Quaternary ice ages, and genetic, fossil and physical data combined can greatly help our understanding of how organisms were so affected.

6,341 citations

01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Abstract: This paper contrasts the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr). A variety of data sets are used to construct global N budgets for 1860 and the early 1990s and to make projections for the global N budget in 2050. Regional N budgets for Asia, North America, and other major regions for the early 1990s, as well as the marine N budget, are presented to highlight the dominant fluxes of nitrogen in each region. Important findings are that human activities increasingly dominate the N budget at the global and at most regional scales, the terrestrial and open ocean N budgets are essentially dis- connected, and the fixed forms of N are accumulating in most environmental reservoirs. The largest uncertainties in our understanding of the N budget at most scales are the rates of natural biological nitrogen fixation, the amount of Nr storage in most environmental reservoirs, and the production rates of N2 by denitrification.

4,555 citations

Journal ArticleDOI
TL;DR: In this paper, the conversion of radiocarbon ages to calibrated (cal) ages for the interval 24,000-0 cal BP (Before Present, 0 cal BP = AD 1950) is discussed.
Abstract: The focus of this paper is the conversion of radiocarbon ages to calibrated (cal) ages for the interval 24,000-0 cal BP (Before Present, 0 cal BP = AD 1950), based upon a sample set of dendrochronologically dated tree rings, uranium-thorium dated corals, and varve-counted marine sediment. The 14C age-cal age information, produced by many laboratories, is converted to 14C profiles and calibration curves, for the atmosphere as well as the oceans. We discuss offsets in measured 14C ages and the errors therein, regional 14C age differences, tree-coral 14C age comparisons and the time dependence of marine reservoir ages, and evaluate decadal vs. single-year 14C results. Changes in oceanic deepwater circulation, especially for the 16,000-11,000 cal BP interval, are reflected in the Δ 14C values of INTCAL98.

4,300 citations

Journal ArticleDOI
TL;DR: Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.
Abstract: Microbes are the unseen majority in soil and comprise a large portion of lifes genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogenfixing bacteria are responsible for c. 5‐20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.

3,673 citations