scispace - formally typeset
Search or ask a question
Author

Daniel M. Suter

Bio: Daniel M. Suter is an academic researcher from Purdue University. The author has contributed to research in topics: Growth cone & Neurite. The author has an hindex of 25, co-authored 54 publications receiving 2454 citations. Previous affiliations of Daniel M. Suter include University of Zurich & Yale University.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent evidence that cell adhesion molecules can regulate growth cone motility and guidance by a mechanism of substrate-cytoskeletal coupling is discussed.
Abstract: Growth cones are highly motile structures at the end of neuronal processes, capable of receiving multiple types of guidance cues and transducing them into directed axonal growth. Thus, to guide the axon toward the appropriate target cell, the growth cone carries out different functions: it acts as a sensor, signal transducer, and motility device. An increasing number of molecular components that mediate axon guidance have been characterized over the past years. The vast majority of these molecules include proteins that act as guidance cues and their respective receptors. In addition, more and more signaling and cytoskeleton-associated proteins have been localized to the growth cone. Furthermore, it has become evident that growth cone motility and guidance depends on a dynamic cytoskeleton that is regulated by incoming guidance information. Current and future research in the growth cone field will be focussed on how different guidance cues transmit their signals to the cytoskeleton and change its dynamic properties to affect the rate and direction of growth cone movement. In this review, we discuss recent evidence that cell adhesion molecules can regulate growth cone motility and guidance by a mechanism of substrate-cytoskeletal coupling.

354 citations

Journal ArticleDOI
TL;DR: By modulating functional linkage to the underlying actin cytoskeleton, cell surface receptors such as apCAM appear to enable the application of tensioning forces to extracellular substrates, providing a mechanism for transducing retrograde flow into guided growth cone movement.
Abstract: Dynamic cytoskeletal rearrangements are involved in neuronal growth cone motility and guidance. To investigate how cell surface receptors translate guidance cue recognition into these cytoskeletal changes, we developed a novel in vitro assay where beads, coated with antibodies to the immunoglobulin superfamily cell adhesion molecule apCAM or with purified native apCAM, replaced cellular substrates. These beads associated with retrograde F-actin flow, but in contrast to previous studies, were then physically restrained with a microneedle to simulate interactions with noncompliant cellular substrates. After a latency period of ∼10 min, we observed an abrupt increase in bead-restraining tension accompanied by direct extension of the microtubule-rich central domain toward sites of apCAM bead binding. Most importantly, we found that retrograde F-actin flow was attenuated only after restraining tension had increased and only in the bead interaction axis where preferential microtubule extension occurred. These cytoskeletal and structural changes are very similar to those reported for growth cone interactions with physiological targets. Immunolocalization using an antibody against the cytoplasmic domain of apCAM revealed accumulation of the transmembrane isoform of apCAM around bead-binding sites. Our results provide direct evidence for a mechanical continuum from apCAM bead substrates through the peripheral domain to the central cytoplasmic domain. By modulating functional linkage to the underlying actin cytoskeleton, cell surface receptors such as apCAM appear to enable the application of tensioning forces to extracellular substrates, providing a mechanism for transducing retrograde flow into guided growth cone movement.

212 citations

Journal ArticleDOI
TL;DR: A role for forces, bulk microtubule movements, and intercalated mass addition in the process of axonal elongation is supported, supporting a satisfying answer to the question, "How do axons grow?"

198 citations

Journal ArticleDOI
TL;DR: In this study, the identity of three additional low molecular weight proteins of 23,17, and 10 kDa associated with myosin-Va is established, and the 23- and 17-kDa subunits are both members of the myOSin-II essential light chain gene family, encoded by the chicken L23 and L17 light chain genes, respectively.
Abstract: Class V myosins are a ubiquitously expressed family of actin-based molecular motors. Biochemical studies on myosin-Va from chick brain indicate that this myosin is a two-headed motor with multiple calmodulin light chains associated with the regulatory or neck domain of each heavy chain, a feature consistent with the regulatory effects of Ca(2+) on this myosin. In this study, the identity of three additional low molecular weight proteins of 23-,17-, and 10 kDa associated with myosin-Va is established. The 23- and 17-kDa subunits are both members of the myosin-II essential light chain gene family, encoded by the chicken L23 and L17 light chain genes, respectively. The 10-kDa subunit is a protein originally identified as a light chain (DLC8) of flagellar and axonemal dynein. The 10-kDa subunit is associated with the tail domain of myosin-Va.

171 citations

Journal ArticleDOI
TL;DR: Recent studies suggest that modulation of coupling between extracellular substrates and intracellular cytoskeletal networks via cell surface receptors is an important mechanism for regulating directed neuronal growth.

169 citations


Cited by
More filters
Journal ArticleDOI
15 Nov 1996-Science
TL;DR: Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.
Abstract: Neuronal growth cones navigate over long distances along specific pathways to find their correct targets. The mechanisms and molecules that direct this pathfinding are the topics of this review. Growth cones appear to be guided by at least four different mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion. Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.

3,166 citations

Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations

Journal ArticleDOI
TL;DR: The nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair are reviewed.
Abstract: Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.

1,237 citations

Journal ArticleDOI
TL;DR: Why mitochondria move and how they move is reviewed, focusing particularly on recent studies of transport regulation, which implicate control of motor activity by specific cell-signaling pathways, regulation of motor access to transport tracks and static microtubule–mitochondrion linkers.
Abstract: Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.

1,231 citations

Journal ArticleDOI
09 Jun 2000-Cell
TL;DR: CDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains, which may contribute to the specificity of neuronal connectivity.

1,094 citations