scispace - formally typeset
Search or ask a question
Author

Daniel Neil

Other affiliations: ETH Zurich
Bio: Daniel Neil is an academic researcher from University of Zurich. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 22, co-authored 47 publications receiving 2655 citations. Previous affiliations of Daniel Neil include ETH Zurich.

Papers
More filters
Proceedings ArticleDOI
12 Jul 2015
TL;DR: In this paper, a set of optimization techniques to minimize performance loss in the conversion process for convolutional networks and fully connected deep networks are presented, which yield networks that outperform all previous SNNs on the MNIST database.
Abstract: Deep neural networks such as Convolutional Networks (ConvNets) and Deep Belief Networks (DBNs) represent the state-of-the-art for many machine learning and computer vision classification problems To overcome the large computational cost of deep networks, spiking deep networks have recently been proposed, given the specialized hardware now available for spiking neural networks (SNNs) However, this has come at the cost of performance losses due to the conversion from analog neural networks (ANNs) without a notion of time, to sparsely firing, event-driven SNNs Here we analyze the effects of converting deep ANNs into SNNs with respect to the choice of parameters for spiking neurons such as firing rates and thresholds We present a set of optimization techniques to minimize performance loss in the conversion process for ConvNets and fully connected deep networks These techniques yield networks that outperform all previous SNNs on the MNIST database to date, and many networks here are close to maximum performance after only 20 ms of simulated time The techniques include using rectified linear units (ReLUs) with zero bias during training, and using a new weight normalization method to help regulate firing rates Our method for converting an ANN into an SNN enables low-latency classification with high accuracies already after the first output spike, and compared with previous SNN approaches it yields improved performance without increased training time The presented analysis and optimization techniques boost the value of spiking deep networks as an attractive framework for neuromorphic computing platforms aimed at fast and efficient pattern recognition

731 citations

Journal ArticleDOI
TL;DR: This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation and shows that the system can be biased to select the correct digit from otherwise ambiguous input.
Abstract: Deep Belief Networks (DBNs) have recently shown impressive performance on a broad range of classification problems. Their generative properties allow better understanding of the performance, and provide a simpler solution for sensor fusion tasks. However, because of their inherent need for feedback and parallel update of large numbers of units, DBNs are expensive to implement on serial computers. This paper proposes a method based on the Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto an efficient event-driven spiking neural network suitable for hardware implementation. The method is demonstrated in simulation and by a real-time implementation of a 3-layer network with 2694 neurons used for visual classification of MNIST handwritten digits with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system is implemented through the open-source software in the jAER project and runs in real-time on a laptop computer. It is demonstrated that the system can recognize digits in the presence of distractions, noise, scaling, translation and rotation, and that the degradation of recognition performance by using an event-based approach is less than 1%. Recognition is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue integration from both silicon retina and cochlea outputs we show that the system can be biased to select the correct digit from otherwise ambiguous input.

386 citations

Posted Content
TL;DR: This work introduces the Phased LSTM model, which extends the L STM unit by adding a new time gate, controlled by a parametrized oscillation with a frequency range which require updates of the memory cell only during a small percentage of the cycle.
Abstract: Recurrent Neural Networks (RNNs) have become the state-of-the-art choice for extracting patterns from temporal sequences. However, current RNN models are ill-suited to process irregularly sampled data triggered by events generated in continuous time by sensors or other neurons. Such data can occur, for example, when the input comes from novel event-driven artificial sensors that generate sparse, asynchronous streams of events or from multiple conventional sensors with different update intervals. In this work, we introduce the Phased LSTM model, which extends the LSTM unit by adding a new time gate. This gate is controlled by a parametrized oscillation with a frequency range that produces updates of the memory cell only during a small percentage of the cycle. Even with the sparse updates imposed by the oscillation, the Phased LSTM network achieves faster convergence than regular LSTMs on tasks which require learning of long sequences. The model naturally integrates inputs from sensors of arbitrary sampling rates, thereby opening new areas of investigation for processing asynchronous sensory events that carry timing information. It also greatly improves the performance of LSTMs in standard RNN applications, and does so with an order-of-magnitude fewer computes at runtime.

298 citations

Journal ArticleDOI
TL;DR: Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance, and can be integrated into existing robotics or offload computationally expensive neural network tasks from the CPU.
Abstract: Current neural networks are accumulating accolades for their performance on a variety of real-world computational tasks including recognition, classification, regression, and prediction, yet there are few scalable architectures that have emerged to address the challenges posed by their computation. This paper introduces Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance. As an field-programmable gate array-based system, it can be integrated into existing robotics or it can offload computationally expensive neural network tasks from the CPU. The version presented here implements a spiking deep network which achieves 19 million postsynaptic currents per second on 1.5 W of power and supports up to 65 K neurons per board. The system records 92% accuracy on the MNIST handwritten digit classification and 71% accuracy on the 20 newsgroups classification data set. Due to its event-driven nature, it allows for trading off between accuracy and latency.

222 citations

Journal ArticleDOI
TL;DR: How machine learning can aid early diagnosis and interpretation of medical images as well as the discovery and development of new therapies is discussed, and the latest developments in the use of machine learning to interrogate neurodegenerative disease-related datasets are described.
Abstract: Globally, there is a huge unmet need for effective treatments for neurodegenerative diseases. The complexity of the molecular mechanisms underlying neuronal degeneration and the heterogeneity of the patient population present massive challenges to the development of early diagnostic tools and effective treatments for these diseases. Machine learning, a subfield of artificial intelligence, is enabling scientists, clinicians and patients to address some of these challenges. In this Review, we discuss how machine learning can aid early diagnosis and interpretation of medical images as well as the discovery and development of new therapies. A unifying theme of the different applications of machine learning is the integration of multiple high-dimensional sources of data, which all provide a different view on disease, and the automated derivation of actionable insights.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: The LSTM cell and its variants are reviewed and their variants are explored to explore the learning capacity of the LSTm cell and the L STM networks are divided into two broad categories:LSTM-dominated networks and integrated LSTS networks.
Abstract: Recurrent neural networks (RNNs) have been widely adopted in research areas concerned with sequential data, such as text, audio, and video. However, RNNs consisting of sigma cells or tanh cells are...

1,561 citations

Journal ArticleDOI
TL;DR: A SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e., conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold is presented.
Abstract: In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN) can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns), since most of such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e. conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks.

1,098 citations

Proceedings ArticleDOI
27 Jun 2018
TL;DR: A novel deep learning framework, namely Long- and Short-term Time-series network (LSTNet), to address this open challenge of multivariate time series forecasting, using the Convolution Neural Network and the Recurrent Neural Network to extract short-term local dependency patterns among variables and to discover long-term patterns for time series trends.
Abstract: Multivariate time series forecasting is an important machine learning problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. Temporal data arise in these real-world applications often involves a mixture of long-term and short-term patterns, for which traditional approaches such as Autoregressive models and Gaussian Process may fail. In this paper, we proposed a novel deep learning framework, namely Long- and Short-term Time-series network (LSTNet), to address this open challenge. LSTNet uses the Convolution Neural Network (CNN) and the Recurrent Neural Network (RNN) to extract short-term local dependency patterns among variables and to discover long-term patterns for time series trends. Furthermore, we leverage traditional autoregressive model to tackle the scale insensitive problem of the neural network model. In our evaluation on real-world data with complex mixtures of repetitive patterns, LSTNet achieved significant performance improvements over that of several state-of-the-art baseline methods. All the data and experiment codes are available online.

878 citations

Journal ArticleDOI
27 Nov 2019-Nature
TL;DR: An overview of the developments in neuromorphic computing for both algorithms and hardware is provided and the fundamentals of learning and hardware frameworks are highlighted, with emphasis on algorithm–hardware codesign.
Abstract: Guided by brain-like ‘spiking’ computational frameworks, neuromorphic computing—brain-inspired computing for machine intelligence—promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm–hardware codesign. The authors review the advantages and future prospects of neuromorphic computing, a multidisciplinary engineering concept for energy-efficient artificial intelligence with brain-inspired functionality.

877 citations