scispace - formally typeset
Search or ask a question
Author

Daniel P. Glavin

Bio: Daniel P. Glavin is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Sample Analysis at Mars & Mars Exploration Program. The author has an hindex of 51, co-authored 285 publications receiving 11771 citations. Previous affiliations of Daniel P. Glavin include Max Planck Society & Paris 12 Val de Marne University.


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study, and preliminary examination shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin.
Abstract: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

886 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage and a diverse suite of organic compounds is present and identifiable within the returned samples.
Abstract: Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.

547 citations

Journal ArticleDOI
Paul R. Mahaffy1, Chris Webster2, Michel Cabane3, Pamela G. Conrad1, Patrice Coll4, Sushil K. Atreya5, Robert Arvey1, Michael Barciniak1, Mehdi Benna1, L. Bleacher1, William B. Brinckerhoff1, Jennifer L. Eigenbrode1, Daniel Carignan1, Mark Cascia1, Robert A. Chalmers1, Jason P. Dworkin1, Therese Errigo1, Paula Everson1, Heather B. Franz1, Rodger Farley1, Steven Feng1, Gregory Frazier1, Caroline Freissinet1, Daniel P. Glavin1, D. N. Harpold1, Douglas L. Hawk1, Vincent Holmes1, Christopher S. Johnson1, Andrea Jones1, Patrick R. Jordan1, James W. Kellogg1, Jesse Lewis1, Eric Lyness1, Charles Malespin1, David Martin1, John Maurer1, Amy McAdam1, Douglas McLennan1, T. Nolan1, Marvin Noriega1, Alexander A. Pavlov1, B. D. Prats1, E. Raaen1, Oren E. Sheinman1, D. Sheppard1, James Smith1, Jennifer C. Stern1, Florence Tan1, Melissa G. Trainer1, Douglas W. Ming, Richard V. Morris, John H. Jones, Cindy Gundersen, Andrew Steele6, James J. Wray7, Oliver Botta, Laurie A. Leshin8, Tobias Owen9, Steve Battel, Bruce M. Jakosky10, H. L. K. Manning11, Steven W. Squyres12, Rafael Navarro-González13, Christopher P. McKay14, François Raulin3, Robert Sternberg3, Arnaud Buch15, Paul Sorensen, Robert Kline-Schoder, David Coscia3, Cyril Szopa3, Samuel Teinturier3, Curt Baffes2, Jason Feldman2, Greg Flesch2, Siamak Forouhar2, Ray Garcia2, Didier Keymeulen2, Steve Woodward2, Bruce P. Block5, Ken Arnett5, Ryan M. Miller5, Charles Edmonson5, Stephen Gorevan16, E. Mumm16 
TL;DR: The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples.
Abstract: The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL’s Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover’s robotic arm.

475 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin.
Abstract: All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography–mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

449 citations

Journal ArticleDOI
TL;DR: In this article, the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA) were sent to Earth by NASA's Stardust spacecraft.
Abstract: Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.

405 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The presence and spread of antibiotic resistance in non-agricultural, non-clinical environments is explored and the need for more intensive investigation on this subject is demonstrated.
Abstract: Antibiotic-resistant pathogens are profoundly important to human health, but the environmental reservoirs of resistance determinants are poorly understood The origins of antibiotic resistance in the environment is relevant to human health because of the increasing importance of zoonotic diseases as well as the need for predicting emerging resistant pathogens This Review explores the presence and spread of antibiotic resistance in non-agricultural, non-clinical environments and demonstrates the need for more intensive investigation on this subject

1,850 citations

Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: Simulation of the early Solar System shows how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1’au; the terrestrial planets then form from this disk over the next 30–50 million years, with an Earth/Mars mass ratio consistent with observations.
Abstract: Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

1,174 citations

01 Jan 1996
TL;DR: In this paper, the amount of water outgassed from Mars by impact erosion and hydrodynamic escape is estimated to be between 6 to 160 m. The two sets of estimates may be reconciled if early in its history, Mars lost part of its atmosphere.
Abstract: Estimates of the amount of water outgassed from Mars, based on the composition of the atmosphere, range from 6 to 160 m, as compared with 3 km for the Earth. In contrast, large flood features, valley networks, and several indicators of ground ice suggest that at least 500 m of water have outgassed. The two sets of estimates may be reconciled if early in its history, Mars lost part of its atmosphere by impact erosion and hydrodynamic escape.

910 citations

Journal ArticleDOI
TL;DR: The present implications of their chiral nature and necessity of separating enantiomers are summarised in this article and a brief overview of the actual approaches to perform enantioseparations at analytical and preparative scale is given.

894 citations