scispace - formally typeset
Search or ask a question
Author

Daniel P. Sanders

Bio: Daniel P. Sanders is an academic researcher from IBM. The author has contributed to research in topics: Photoresist & Photolithography. The author has an hindex of 36, co-authored 133 publications receiving 5922 citations. Previous affiliations of Daniel P. Sanders include Case Western Reserve University & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Application of this model has allowed for the prediction and development of selective cross metathesis reactions, culminating in unprecedented three-component intermolecular cross metAthesis reactions.
Abstract: In recent years, olefin cross metathesis (CM) has emerged as a powerful and convenient synthetic technique in organic chemistry; however, as a general synthetic method, CM has been limited by the lack of predictability in product selectivity and stereoselectivity. Investigations into olefin cross metathesis with several classes of olefins, including substituted and functionalized styrenes, secondary allylic alcohols, tertiary allylic alcohols, and olefins with α-quaternary centers, have led to a general model useful for the prediction of product selectivity and stereoselectivity in cross metathesis. As a general ranking of olefin reactivity in CM, olefins can be categorized by their relative abilities to undergo homodimerization via cross metathesis and the susceptibility of their homodimers toward secondary metathesis reactions. When an olefin of high reactivity is reacted with an olefin of lower reactivity (sterically bulky, electron-deficient, etc.), selective cross metathesis can be achieved using fee...

1,355 citations

Journal ArticleDOI
TL;DR: 1,4-Benzoquinones have been found to prevent olefin isomerization of a number of allylic ethers and long-chain aliphatic alkenes during ruthenium-catalyzed Olefin metathesis reactions, and this mild, inexpensive, and effective method increases the synthetic utility of olefins via improvement of overall product yield and purity.
Abstract: 1,4-Benzoquinones have been found to prevent olefin isomerization of a number of allylic ethers and long-chain aliphatic alkenes during ruthenium-catalyzed olefin metathesis reactions. Electron-deficient benzoquinones are the most effective additives for the prevention of olefin migration. This mild, inexpensive, and effective method to block olefin isomerization increases the synthetic utility of olefin metathesis via improvement of overall product yield and purity.

558 citations

Journal ArticleDOI
15 Jul 2010-ACS Nano
TL;DR: Novel strategies to integrate block copolymer self-assembly with 193 nm water immersion lithography with versatile integration schemes which are fully compatible with current optical lithography patterning materials, processes, and tooling are reported.
Abstract: We report novel strategies to integrate block copolymer self-assembly with 193 nm water immersion lithography. These strategies employ commercially available positive tone chemically amplified photoresists to spatially encode directing information into precise topographical or chemical prepatterns for the directed self-assembly of block copolymers. Each of these methods exploits the advantageous solubility and thermal properties of polarity-switched positive tone photoresist materials. Precisely registered, sublithographic self-assembled structures are fabricated using these versatile integration schemes which are fully compatible with current optical lithography patterning materials, processes, and tooling.

270 citations

Journal ArticleDOI
TL;DR: Infrared photoinduced force microscopy has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films, and provides a powerful new analytical method for deepening the understanding of nanomaterials.
Abstract: Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials.

212 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fascinating story of olefin (or alkene) metathesis began almost five decades ago, when Anderson and Merckling reported the first carbon-carbon double-bond rearrangement reaction in the titanium-catalyzed polymerization of norbornene.
Abstract: The fascinating story of olefin (or alkene) metathesis (eq 1) began almost five decades ago, when Anderson and Merckling reported the first carbon-carbon double-bond rearrangement reaction in the titanium-catalyzed polymerization of norbornene. Nine years later, Banks and Bailey reported “a new disproportionation reaction . . . in which olefins are converted to homologues of shorter and longer carbon chains...”. In 1967, Calderon and co-workers named this metal-catalyzed redistribution of carbon-carbon double bonds olefin metathesis, from the Greek word “μeτάθeση”, which means change of position. These contributions have since served as the foundation for an amazing research field, and olefin metathesis currently represents a powerful transformation in chemical synthesis, attracting a vast amount of interest both in industry and academia.

1,696 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Application of this model has allowed for the prediction and development of selective cross metathesis reactions, culminating in unprecedented three-component intermolecular cross metAthesis reactions.
Abstract: In recent years, olefin cross metathesis (CM) has emerged as a powerful and convenient synthetic technique in organic chemistry; however, as a general synthetic method, CM has been limited by the lack of predictability in product selectivity and stereoselectivity. Investigations into olefin cross metathesis with several classes of olefins, including substituted and functionalized styrenes, secondary allylic alcohols, tertiary allylic alcohols, and olefins with α-quaternary centers, have led to a general model useful for the prediction of product selectivity and stereoselectivity in cross metathesis. As a general ranking of olefin reactivity in CM, olefins can be categorized by their relative abilities to undergo homodimerization via cross metathesis and the susceptibility of their homodimers toward secondary metathesis reactions. When an olefin of high reactivity is reacted with an olefin of lower reactivity (sterically bulky, electron-deficient, etc.), selective cross metathesis can be achieved using fee...

1,355 citations

01 Mar 1996
TL;DR: In this paper, a mean-field phase diagram for conformationally symmetric diblock melts using the standard Gaussian polymer model is presented, which traverses the weak- to strong-segregation regimes, is free of traditional approximations.
Abstract: A mean-field phase diagram for conformationally symmetric diblock melts using the standard Gaussian polymer model is presented. Our calculation, which traverses the weak- to strong-segregation regimes, is free of traditional approximations. Regions of stability are determined for disordered (DIS) melts and for ordered structures including lamellae (L), hexagonally packed cylinders (H), body-centered cubic spheres (QIm3m), close-packed spheres (CPS), and the bicontinuous cubic network with Ia3d symmetry (QIa3d). The CPS phase exists in narrow regions along the order−disorder transition for χN ≥ 17.67. Results suggest that the QIa3d phase is not stable above χN ∼ 60. Along the L/QIa3d phase boundaries, a hexagonally perforated lamellar (HPL) phase is found to be nearly stable. Our results for the bicontinuous Pn3m cubic (QPn3m) phase, known as the OBDD, indicate that it is an unstable structure in diblock melts. Earlier approximation schemes used to examine mean-field behavior are reviewed, and compa...

1,256 citations