scispace - formally typeset
Search or ask a question
Author

Daniel Pressnitzer

Bio: Daniel Pressnitzer is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Perception & Timbre. The author has an hindex of 30, co-authored 95 publications receiving 2985 citations. Previous affiliations of Daniel Pressnitzer include Paris Descartes University & IRCAM.


Papers
More filters
Journal ArticleDOI
TL;DR: This work compares the temporal dynamics of percept alternations observed during auditory streaming with those observed for visual plaids and the susceptibilities of both modalities to volitional control to indicate that auditory and visual alternations share common principles of perceptual bistability.

292 citations

Journal ArticleDOI
TL;DR: This work finds that scene analysis starts much earlier in the auditory pathways than previously reported, and reveals that subcortical structures may already contribute to the analysis of auditory scenes.

220 citations

Journal ArticleDOI
TL;DR: A computational auditory model that extracts pitch information with autocorrelation can reproduce all of the observed effects, provided the contribution of longer time intervals is progressively reduced by a linear weighting function that limits the mechanism to time intervals of less than about 33 ms.
Abstract: An objective melody task was used to determine the lower limit of melodic pitch (LLMP) for harmonic complex tones. The LLMP was defined operationally as the repetition rate below which listeners could no longer recognize that one of the notes in a four-note, chromatic melody had changed by a semitone. In the first experiment, the stimuli were broadband tones with all their components in cosine phase, and the LLMP was found to be around 30 Hz. In the second experiment, the tones were filtered into bands about 1 kHz in width to determine the influence of frequency region on the LLMP. The results showed that whenever there was energy present below 800 Hz, the LLMP was still around 30 Hz. When the energy was limited to higher-frequency regions, however, the LLMP increased progressively, up to 270 Hz when the energy was restricted to the region above 3.2 kHz. In the third experiment, the phase relationship between spectral components was altered to determine whether the shape of the waveform affects the LLMP. When the envelope peak factor was reduced using the Schroeder phase relationship, the LLMP was not affected. When a secondary peak was introduced into the envelope of the stimuli by alternating the phase of successive components between two fixed values, there was a substantial reduction in the LLMP, for stimuli containing low-frequency energy. A computational auditory model that extracts pitch information with autocorrelation can reproduce all of the observed effects, provided the contribution of longer time intervals is progressively reduced by a linear weighting function that limits the mechanism to time intervals of less than about 33 ms.

177 citations

Journal ArticleDOI
27 May 2010-Neuron
TL;DR: It is proposed that rapid sensory plasticity could explain how the auditory brain creates useful memories from the ever-changing, but sometimes repeating, acoustical world.

175 citations

Journal ArticleDOI
TL;DR: The hypothesis that in the low-frequency region, the pitch limit is determined by a temporal mechanism, which analyzes time intervals between peaks in the neural activity pattern, is supported.
Abstract: This paper is concerned with the lower limit of pitch for complex, harmonic sounds, like the notes produced by low-pitched musical instruments. The lower limit of pitch is investigated by measuring rate discrimination thresholds for harmonic tones filtered into 1.2-kHz-wide bands with a lower cutoff frequency, Fc, ranging from 0.2 to 6.4 kHz. When Fc is below 1 kHz and the harmonics are in cosine phase, rate discrimination threshold exhibits a rapid, tenfold decrease as the repetition rate is increased from 16 to 64 Hz, and over this range, the perceptual quality of the stimuli changes from flutter to pitch. When Fc is increased above 1 kHz, the slope of the transition from high to low thresholds becomes shallower and occurs at progressively higher rates. A quantitative comparison of the cosine-phase thresholds with subjective estimates of the existence region of pitch from the literature shows that the transition in rate discrimination occurs at approximately the same rate as the lower limit of pitch. Th...

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.
Abstract: The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

5,279 citations

Journal Article
TL;DR: In this article, the authors propose that the brain produces an internal representation of the world, and the activation of this internal representation is assumed to give rise to the experience of seeing, but it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness.
Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual \"filling in,\" visual stability despite eye movements, change blindness, sensory substitution, and color perception.

2,271 citations

Journal ArticleDOI
TL;DR: An algorithm is presented for the estimation of the fundamental frequency (F0) of speech or musical sounds, based on the well-known autocorrelation method with a number of modifications that combine to prevent errors.
Abstract: An algorithm is presented for the estimation of the fundamental frequency (F0) of speech or musical sounds. It is based on the well-known autocorrelation method with a number of modifications that combine to prevent errors. The algorithm has several desirable features. Error rates are about three times lower than the best competing methods, as evaluated over a database of speech recorded together with a laryngograph signal. There is no upper limit on the frequency search range, so the algorithm is suited for high-pitched voices and music. The algorithm is relatively simple and may be implemented efficiently and with low latency, and it involves few parameters that must be tuned. It is based on a signal model (periodic signal) that may be extended in several ways to handle various forms of aperiodicity that occur in particular applications. Finally, interesting parallels may be drawn with models of auditory processing.

1,975 citations

Journal ArticleDOI
TL;DR: It is concluded that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.
Abstract: Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

1,381 citations