scispace - formally typeset
Search or ask a question
Author

Daniel R. Wik

Bio: Daniel R. Wik is an academic researcher from University of Utah. The author has contributed to research in topics: Galaxy & Galaxy cluster. The author has an hindex of 39, co-authored 132 publications receiving 7707 citations. Previous affiliations of Daniel R. Wik include Ohio University & Goddard Space Flight Center.


Papers
More filters
Journal ArticleDOI
Fiona A. Harrison1, William W. Craig2, William W. Craig3, Finn Erland Christensen4, Charles J. Hailey5, William W. Zhang6, Steven E. Boggs2, Daniel Stern1, W. Rick Cook1, Karl Forster1, Paolo Giommi, Brian W. Grefenstette1, Yunjin Kim1, Takao Kitaguchi7, Jason E. Koglin5, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Kaya Mori5, M. Perri8, Michael J. Pivovaroff3, Simonetta Puccetti8, Vikram Rana1, Niels Jørgen Stenfeldt Westergaard4, J. L. Willis1, Andreas Zoglauer2, Hongjun An9, Matteo Bachetti10, Matteo Bachetti11, Nicolas M. Barrière2, Eric C. Bellm1, Varun Bhalerao12, Varun Bhalerao1, Nicolai Brejnholt4, Felix Fuerst1, Carl Christian Liebe1, Craig B. Markwardt6, Melania Nynka5, Julia Vogel3, Dominic J. Walton1, Daniel R. Wik6, David M. Alexander13, L. R. Cominsky14, Ann Hornschemeier6, Allan Hornstrup4, Victoria M. Kaspi9, Greg Madejski, Giorgio Matt15, S. Molendi7, David M. Smith16, John A. Tomsick2, Marco Ajello2, David R. Ballantyne17, Mislav Baloković1, Didier Barret10, Didier Barret11, Franz E. Bauer18, Roger Blandford8, W. Niel Brandt19, Laura Brenneman20, James Chiang8, Deepto Chakrabarty21, Jérôme Chenevez4, Andrea Comastri7, Francois Dufour9, Martin Elvis20, Andrew C. Fabian22, Duncan Farrah23, Chris L. Fryer24, Eric V. Gotthelf5, Jonathan E. Grindlay20, D. J. Helfand25, Roman Krivonos2, David L. Meier1, Jon M. Miller26, Lorenzo Natalucci7, Patrick Ogle1, Eran O. Ofek27, Andrew Ptak6, Stephen P. Reynolds28, Jane R. Rigby6, Gianpiero Tagliaferri7, Stephen E. Thorsett29, Ezequiel Treister30, C. Megan Urry31 
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

1,966 citations

Journal ArticleDOI
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 - 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 13 June 2012, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 -- 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low-background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than one-hundred-fold improvement in sensitivity over the collimated or coded-mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity, spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives, and will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6degree inclination orbit, the Observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of ten years, we anticipate proposing a guest investigator program, to begin in Fall 2014.

1,548 citations

Journal ArticleDOI
Felix Aharonian1, Felix Aharonian2, Hiroki Akamatsu3, Fumie Akimoto4  +221 moreInstitutions (60)
06 Jul 2016-Nature
TL;DR: X-ray observations of the core of the Perseus cluster reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus, infering that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.
Abstract: The Hitomi collaboration reports X-ray observations of the core of the Perseus cluster of galaxies the brightest X-ray-emitting cluster in the sky. Such clusters typically consist of tens to thousands of galaxies bound together by gravity and are studied as models of both small-scale cosmology and large-scale astrophysical processes. The data reveal a remarkably quiescent atmosphere, where gas velocities are quite low, with a line-of-sight velocity dispersion of about 164 kilometres per second at a distance of 3060 kiloparsecs from the central nucleus.

449 citations

Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor, providing strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.
Abstract: Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive ^(44)Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which ^(44)Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed ^(44)Ti emission to estimated ^(56)Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the ^(44)Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the ^(44)Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

262 citations

Journal ArticleDOI
TL;DR: In this article, a complete background model constructed of physically inspired components constrained by extragalactic survey field observations is presented, the specific parameters of which are derived locally from data in non-source regions of target observations.
Abstract: The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30 keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well—but not perfectly—described as an isothermal plasma with kT = 14.2 ± 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT ~ 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 × 10^(–12) erg s^(–1) cm^(–2) (50-100 keV), implying a lower limit on B ≳ 0.2 μG, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.

226 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
Fiona A. Harrison1, William W. Craig2, William W. Craig3, Finn Erland Christensen4, Charles J. Hailey5, William W. Zhang6, Steven E. Boggs3, Daniel Stern1, W. Rick Cook1, Karl Forster1, Paolo Giommi, Brian W. Grefenstette1, Yunjin Kim1, Takao Kitaguchi7, Jason E. Koglin5, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Kaya Mori5, M. Perri8, Michael J. Pivovaroff2, Simonetta Puccetti8, Vikram Rana1, Niels Jørgen Stenfeldt Westergaard4, J. L. Willis1, Andreas Zoglauer3, Hongjun An9, Matteo Bachetti10, Matteo Bachetti11, Nicolas M. Barrière3, Eric C. Bellm1, Varun Bhalerao12, Varun Bhalerao1, Nicolai Brejnholt4, Felix Fuerst1, Carl Christian Liebe1, Craig B. Markwardt6, Melania Nynka5, Julia Vogel2, Dominic J. Walton1, Daniel R. Wik6, David M. Alexander13, L. R. Cominsky14, Ann Hornschemeier6, Allan Hornstrup4, Victoria M. Kaspi9, Greg Madejski, Giorgio Matt15, S. Molendi7, David M. Smith16, John A. Tomsick3, Marco Ajello3, David R. Ballantyne17, Mislav Baloković1, Didier Barret10, Didier Barret11, Franz E. Bauer18, Roger Blandford8, W. Niel Brandt19, Laura Brenneman20, James Chiang8, Deepto Chakrabarty21, Jérôme Chenevez4, Andrea Comastri7, Francois Dufour9, Martin Elvis20, Andrew C. Fabian22, Duncan Farrah23, Chris L. Fryer24, Eric V. Gotthelf5, Jonathan E. Grindlay20, D. J. Helfand25, Roman Krivonos3, David L. Meier1, Jon M. Miller26, Lorenzo Natalucci7, Patrick Ogle1, Eran O. Ofek27, Andrew Ptak6, Stephen P. Reynolds28, Jane R. Rigby6, Gianpiero Tagliaferri7, Stephen E. Thorsett29, Ezequiel Treister30, C. Megan Urry31 
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

1,966 citations